English

Lim X → 0 − Sin [ X ] [ X ] . - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\] 

Solution

\[\lim_{x \to 0^-} \left( \frac{\sin \left[ x \right]}{\left[ x \right]} \right)\]
\[ x = 0 - h\]
\[ \therefore h \to 0\]
\[ = \lim_{h \to 0} \left( \frac{\sin \left[ 0 - h \right]}{\left[ 0 - h \right]} \right)\]
\[ = \frac{\sin \left( - 1 \right)}{- 1}\]
\[ = \frac{- \sin 1}{- 1}\]
\[ = \sin 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.12 [Page 77]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.12 | Q 5 | Page 77

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\] 


\[\lim_{x \to 0} 9\] 


\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\] 


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\] 


\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\] 


\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\] 


Evaluate: \[\lim_{n \to \infty} \frac{1 . 2 + 2 . 3 + 3 . 4 + . . . + n\left( n + 1 \right)}{n^3}\] 


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\] 


\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\tan x - \sin x}{\sin 3x - 3 \sin x}\]


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\] 

 


\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\] 


\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin 2x}{1 + \cos 4x}\] 


\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]


\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]


Evaluate the following limit:

\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]

 


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


Write the value of \[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


\[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to 


\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to 


If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]


The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\] 


The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is 


Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`


Evaluate the following Limit:

`lim_(x -> 0) ((1 + x)^"n" - 1)/x`


If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.


Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when"  x ≠ pi/2),(3",", x = pi/2  "and if"  f(x) = f(pi/2)):}` find the value of k.


Evaluate the Following limit:

`lim_(x->5) [(x^3 -125)/(x^5-3125)]`


Evaluate the following limit:

`\underset{x->3}{lim}[sqrt(x +6)/(x)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×