English

Lim X → − 1 / 2 8 X 3 + 1 2 X + 1 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\] 

Solution

\[\lim_{x \to - 1/2} \left[ \frac{8 x^3 + 1}{2x + 1} \right]\]
\[\text{ It is of the form } \frac{0}{0} . \]
\[ \lim_{x \to - 1/2} \left[ \frac{\left( 2x \right)^3 + 1}{2x + 1} \right]\]
\[ = \lim_{x \to - 1/2} \left[ \frac{\left( 2x + 1 \right)\left\{ \left( 2x \right)^2 - 2x \times 1 + 1^2 \right\}}{\left( 2x + 1 \right)} \right] \left[ \because A^3 + B^3 = \left( A + B \right)\left( A^2 - AB + B^2 \right) \right]\]
\[ = \lim_{x \to - 1/2} \left[ \left( 2x \right)^2 - 2x + 1 \right]\]
\[ = \left( 2 \times \frac{- 1}{2} \right)^2 - 2 \times \frac{- 1}{2} + 1\]
\[ = 1 + 1 + 1\]
\[ = 3\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.3 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.3 | Q 5 | Page 23

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]


\[\lim_{x \to 0} 9\] 


\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\] 


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\] 


\[\lim_{x \to 1} \frac{1 - x^{- 1/3}}{1 - x^{- 2/3}}\] 


\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\] 


\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\] 


\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\] 


\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\] 


\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]


Show that \[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\] 


\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]


\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\] 


\[\lim_{x \to 1} \frac{1 - \frac{1}{x}}{\sin \pi \left( x - 1 \right)}\]


\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]


\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]


\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\] 


\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]


\[\lim_{x \to 0} \left( \cos x \right)^{1/\sin x}\] 


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]

 

Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\] 


Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]


\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to


\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to 


If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]


The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is 


\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to 


Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit:

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.


If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.


Evaluate the Following limit:

`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×