English

Lim N → ∞ [ 1 + 2 + 3 . . . . . . N − 1 N 2 ] - Mathematics

Advertisements
Advertisements

Question

\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\] 

Solution

\[\Rightarrow \lim_{n \to \infty} \left( \frac{1 + 2 + 3 + . . . n - 1}{n^2} \right)\]
\[ \Rightarrow \lim_{n \to \infty} \left[ \frac{n\left( n - 1 \right)}{2 n^2} \right]\]
\[ \Rightarrow \lim_{n \to \infty} \left[ \left( 1 - \frac{1}{n} \right) \times \frac{1}{2} \right]\]
\[When n \to \infty , then \frac{1}{n} \to 0 . \]
\[ = \frac{1}{2}\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.6 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.6 | Q 15 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]


\[\lim_{x \to - 5} \frac{2 x^2 + 9x - 5}{x + 5}\] 


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\] 


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]


\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\] 


\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]


\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\] 


\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\] 


\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\] 


\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\] 


\[\lim_{x \to 0} \frac{\tan x - \sin x}{\sin 3x - 3 \sin x}\]


\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\] 


\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\] 


\[\lim_{x \to 0} \frac{x \cos x + \sin x}{x^2 + \tan x}\] 


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\] 

 


\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]


\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\] 


Evaluate the following limit:

\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\] 


\[\lim_{x \to a} \frac{\cos \sqrt{x} - \cos \sqrt{a}}{x - a}\] 


\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\] 


\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]


\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]


\[\lim_{x \to 0}  \frac{\left( 1 - \cos 2x \right) \sin 5x}{x^2 \sin 3x} =\]


\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to


\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to


\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]is real to


If \[f\left( x \right) = \left\{ \begin{array}{l}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0\end{array}, \right.\] then \[\lim_{x \to 0} f\left( x \right)\]  equals 


The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is 


If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\]  where  denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]  


Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`


If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.


Evaluate the Following limit: 

`lim_ (x -> 3) [sqrt (x + 6)/ x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×