English

Lim X → 1 X 4 − 3 X 3 + 2 X 3 − 5 X 2 + 3 X + 1 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\] 

Solution

p(x) = x4\[-\]  3x3 + 2
p(1) = 1\[-\]3 + 2
       = 0
Now,

\[\left( x - 1 \right)\] is a factor of p(x).

q(x) = x\[-\] 5x2 + 3x + 1
q(1) = 1\[-\]5 + 3 + 1
       = 0

\[\text{ Now }, \left( x - 1 \right)\]is a factor of q(x). 

\[\Rightarrow \lim_{x \to 1} \left[ \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{\left( x - 1 \right)\left( x^3 - 2 x^2 - 2x - 2 \right)}{\left( x - 1 \right)\left( x^2 - 4x - 1 \right)} \right]\]
\[ = \frac{(1 )^3 - 2 \left( 1 \right)^2 - 2\left( 1 \right) - 2}{\left( 1 \right)^2 - 4 \times 1 - 1}\]
\[ = \frac{1 - 2 - 2 - 2}{1 - 4 - 1}\]
\[ = \frac{- 5}{- 4}\]
\[ = \frac{5}{4}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.3 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.3 | Q 25 | Page 23

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\] 


\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\] 


\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\] 


\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\] 


\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\] 


If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a


\[\lim_{x \to \infty} \frac{\left( 3x - 1 \right) \left( 4x - 2 \right)}{\left( x + 8 \right) \left( x - 1 \right)}\] 


\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\] 


\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]


\[\lim_{x \to \infty} \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}}\]


\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\] 


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\] 


\[\lim_{x \to 0} \frac{\sin x^n}{x^n}\] 


\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\] 


\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\] 


\[\lim_\theta \to 0 \frac{1 - \cos 4\theta}{1 - \cos 6\theta}\] 


\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]


\[\lim_{x \to 0} \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x}\]


\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\] 


\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\] 


Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]


\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to 


\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]is real to


\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to 


Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Let f(x) = `{{:(3^(1/x);   x < 0","                "then at"  x = 0),(lambda[x];   x ≥ 0","   lambda ∈ "R"):}`

Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`


If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.


Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when"  x ≠ pi/2),(3",", x = pi/2  "and if"  f(x) = f(pi/2)):}` find the value of k.


Evaluate the Following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit :

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit.

`lim_(x->3)[sqrt(x + 6)/x]`


Evaluate the following limit:

`\underset{x->5}{lim}[(x^3 - 125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×