Advertisements
Advertisements
Question
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\]
Solution
\[\lim_{x \to \frac{\pi}{4}} \left[ \frac{1 - \tan x}{1 - \sqrt{2} \sin x} \right]\]
\[\text{ It is of } \frac{0}{0} \text{ form } .\]
Rationalising the denominator, we get:
\[\lim_{x \to \frac{\pi}{4}} \left[ \frac{\left( 1 - \tan x \right) \left( 1 + \sqrt{2} \sin x \right)}{\left( 1 - \sqrt{2} \sin x \right) \left( 1 + \sqrt{2} \sin x \right)} \right]\]
\[ = \lim_{x \to \frac{\pi}{4}} \left[ \frac{\left( 1 - \tan x \right) \left( 1 + \sqrt{2} \sin x \right)}{1 - 2 \sin^2 x} \right]\]
\[ = \lim_{x \to \frac{\pi}{4}} \left[ \frac{\left( 1 - \frac{\sin x}{\cos x} \right) \left( 1 + \sqrt{2} \sin x \right)}{\cos 2x} \right]\]
\[ = \lim_{x \to \frac{\pi}{4}} \left[ \frac{\left( \cos x - \sin x \right) \left( 1 + \sqrt{2} \sin x \right)}{\cos x \cos 2x} \right] \]
\[ = \lim_{x \to \frac{\pi}{4}} \left[ \frac{\left( \cos x - \sin x \right) \left( 1 + \sqrt{2} \sin x \right)}{\cos x \cdot \left( \cos^2 x - \sin^2 x \right)} \right]\]
\[ = \lim_{x \to \frac{\pi}{4}} \left[ \frac{\left( \cos x - \sin x \right) \left( 1 + \sqrt{2} \sin x \right)}{\cos x \left[ \cos x - \sin x \right] \left[ \cos x + \sin x \right]} \right]\]
\[ = \frac{\left( 1 + \sqrt{2} \times \frac{1}{\sqrt{2}} \right)}{\left( \frac{1}{\sqrt{2}} \right) \left( \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)}\]
\[ = \frac{2}{\frac{1}{\sqrt{2}} \times \sqrt{2}}\]
\[ = 2\]
APPEARS IN
RELATED QUESTIONS
Suppose f(x) = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}` and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?
\[\lim_{x \to 0} \frac{2 x^2 + 3x + 4}{x^2 + 3x + 2}\]
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]
\[\lim_{x \to 0} \frac{ax + b}{cx + d}, d \neq 0\]
\[\lim_{x \to 2} \left( \frac{x}{x - 2} - \frac{4}{x^2 - 2x} \right)\]
\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\]
\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{3/2} - \left( a + 2 \right)^{3/2}}{x - a}\]
\[\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a.
If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a.
\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\]
\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number.
Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\]
\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\]
\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\]
\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\]
\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left( \frac{\pi}{2} - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin 2x}{1 + \cos 4x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\]
\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]
\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]
\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to
If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]
The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is
The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is
Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`
If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.
If f(x) = `{{:(1 if x "is rational"),(-1 if x "is rational"):}` is continuous on ______.
Evaluate the following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the Following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`