English

Lim X → 2 ( X X − 2 − 4 X 2 − 2 X ) - Mathematics

Advertisements
Advertisements

Question

limx2(xx24x22x) 

Solution

limx2[xx24x22x]
=limx2[xx24x(x2)]
=limx2[x24x(x2)]
=limx2[(x2)(x+2)x(x2)]
=limx2[(x+2)x]
=2+22
=2

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.3 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.3 | Q 14 | Page 23

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

limx3x24x+3x22x3 


limx2x38x24 


limx4x216x2 


limxa(x+2)3/2(a+2)3/2xa


If limxax9a9xa=9, find all possible values of a


If limxax3a3xa=limx1x41x1, find all possible values of a


limx(3x1)(4x2)(x+8)(x1) 


limn[(n+2)!+(n+1)!(n+2)!(n+1)!] 


limn[13+23+....n3n4]


f(x)=ax2+bx2+1,limx0f(x)=1 and limxf(x)=1,then prove that f(−2) = f(2) = 1


limx(4x27x+2x) 


limx(x28x+x) 


Evaluate: limn14+24+34+...+n4n5limn13+23+...+n3n5 


limx0x2+1cosxxsinx 


limx0cos2x1cosx1 


limx0sin3x+7x4x+sin2x


limxπ2cos2x1sinx


limxπ4cosxsinxxπ4 


limxπ22sinx1(π2x)2 


limxacosxcosaxa


limxπ5+cosx2(πx)2 


limxasinxsinaxa 


limxπ4f(x)f(π4)xπ4,


limxπ41sin2x1+cos4x 


limxπ2(π2x)sinx2cosx(π2x)+cotx


Evaluate the following limit:

limxπ1sinx2cosx2(cosx4sinx4)

 


Write the value of limx1x[x]. 


limxsinxx equals 


limn{11.3+13.5+15.7+...+1(2n+1)(2n+3)}is equal to


limx01+x1x is equal to 


limxπ/442(cosx+sinx)51sin2x is equal to 


limx08x8{1cosx22cosx24+cosx22cosx24} is equal to 


If α is a repeated root of ax2 + bx + c = 0, then limxαtan(ax2+bx+c)(xα)2


limθπ/21sinθ(π/2θ)cosθ is equal to 


The value of limxn!(n+1)!n! 


If limx1x4-1x-1=limxkx3-l3x2-k2, then find the value of k.


Number of values of x where the function

f(x) = {tanxlog(x-2)x2-4x+3;x(2,4)-{3,π}16tanx;x=3, π

is discontinuous, is ______.


Evaluate the Following limit:

limx3[x+6x]


Evaluate the following limit:

limx5[x3-125x5-3125]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.