Advertisements
Advertisements
Question
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to
Options
\[\frac{1}{2}\]
2
0
1
Solution
\[\frac{1}{2}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\]
\[ = \lim_{x \to 0} \frac{\left( \sqrt{1 + x} - 1 \right) \left( \sqrt{1 + x} + 1 \right)}{\left( \sqrt{1 + x} + 1 \right) x}\]
\[ = \lim_{x \to 0} \frac{1 + x - 1}{x\sqrt{1 + x + 1}}\]
\[ = \lim_{x \to 0} \frac{1}{x\left( \sqrt{1 + x} + 1 \right)}\]
\[ = \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 2} \left( \frac{x}{x - 2} - \frac{4}{x^2 - 2x} \right)\]
\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\]
\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a.
\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\]
\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + . . . + \frac{1}{3^n} \right]\]
\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\]
\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\]
\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\]
\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\]
\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]
\[\lim_{x \to \frac{\pi}{8}} \frac{\cot 4x - \cos 4x}{\left( \pi - 8x \right)^3}\]
\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]
\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]
Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
\[\lim_{x \to 0} \frac{\sin 2x}{x}\]
\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals
\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]
If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal
The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\] is
\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to
The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is
The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is
The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is
Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.
If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.
Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`
Evaluate the Following limit:
`lim_(x->5) [(x^3 -125)/(x^5-3125)]`
Evaluate the following limit:
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the Following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the Following limit:
`lim_ (x -> 3) [sqrt (x + 6)/ x]`