English

Lim N → ∞ ( 1 + X N ) N - Mathematics

Advertisements
Advertisements

Question

\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]

Solution

\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n \]
\[ = e^\lim_{n \to \infty} \left( \frac{x}{n} \right) \times n \]
\[ = e^x\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.11 [Page 76]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.11 | Q 1 | Page 76

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find `lim_(x -> 5) f(x)`, where f(x)  = |x| - 5


Suppose f(x)  = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}`  and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?


\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\] 


\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]


\[\lim_{x \to 0} 9\] 


\[\lim_{x \to 0} \frac{ax + b}{cx + d}, d \neq 0\]


\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\] 


\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\] 


\[\lim_{x \to \sqrt{3}} \frac{x^2 - 3}{x^2 + 3 \sqrt{3}x - 12}\]


\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\] 


\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\] 


\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a


If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a

 

 


\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\] 


\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\] 


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{x \to 0} \frac{\sin x \cos x}{3x}\] 


\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]


\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\] 


\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\] 


\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\] 


\[\lim_{x \to a} \frac{\cos \sqrt{x} - \cos \sqrt{a}}{x - a}\] 


\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\] 


\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\] 


\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\] 


\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals 


The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\]  is


The value of \[\lim_{x \to \infty} \frac{n!}{\left( n + 1 \right)! - n!}\] 


Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.


Evaluate the following Limit:

`lim_(x -> 0) ((1 + x)^"n" - 1)/x`


Evaluate the following limits: `lim_(x ->3) [sqrt(x + 6)/x]`


Evaluate the Following limit:

`lim_(x->7)[[(root[3][x] - root[3][7])(root[3][x] + root[3][7])] / (x - 7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×