Advertisements
Advertisements
Question
\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]
Solution
\[\lim_{x \to \frac{\pi}{6}} \left[ \frac{\cot^2 x - 3}{cosec x - 2} \right]\]
\[ = \lim_{x \to \frac{\pi}{6}} \left[ \frac{{cosec}^2 x - 1 - 3}{cosec x - 2} \right]\]
\[ = \lim_{x \to \frac{\pi}{6}} \left[ \frac{{cosec}^2 x - 4}{cosec x - 2} \right]\]
\[ = \lim_{x \to \frac{\pi}{6}} \left[ \frac{\left( cosec x - 2 \right) \left( cosec x + 2 \right)}{\left( cosec x - 2 \right)} \right]\]
\[ = cosec\frac{\pi}{6} + 2\]
\[ = 2 + 2\]
\[ = 4\]
APPEARS IN
RELATED QUESTIONS
Find `lim_(x -> 5) f(x)`, where f(x) = |x| - 5
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\]
\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\]
\[\lim_{x \to 1/4} \frac{4x - 1}{2\sqrt{x} - 1}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\]
If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a.
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\]
\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\]
\[\lim_{x \to 0} \frac{\sin x^n}{x^n}\]
\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\]
\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\]
\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 2x - \cos 8x}\]
\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\]
\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]
\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]
Evaluate the following limit:
\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]
\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]
\[\lim_{x \to 1} \frac{1 - \frac{1}{x}}{\sin \pi \left( x - 1 \right)}\]
\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
Evaluate the following limit:
\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
\[\lim_{x \to 0} \frac{\sin 2x}{x}\]
\[\lim_{x \to 0} \frac{\left( 1 - \cos 2x \right) \sin 5x}{x^2 \sin 3x} =\]
The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is
Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`
Evaluate the following limits: `lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`
Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`
Evaluate the following Limits: `lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`
Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when" x ≠ pi/2),(3",", x = pi/2 "and if" f(x) = f(pi/2)):}` find the value of k.
Number of values of x where the function
f(x) = `{{:((tanxlog(x - 2))/(x^2 - 4x + 3); x∈(2, 4) - {3, π}),(1/6tanx; x = 3"," π):}`
is discontinuous, is ______.
Evaluate the Following limit:
`lim_ (x -> 3) [sqrt (x + 6)/ x]`