मराठी

Lim X → 0 Sin X 2 ( 1 − Cos X 2 ) X 6 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 0} \frac{\sin x^2 \left( 1 - \cos x^2 \right)}{x^6}\] 

उत्तर

\[\lim_{x \to 0} \left[ \frac{\sin x^2 \left( 1 - \cos x^2 \right)}{x^6} \right]\] 

\[= \lim_{x \to 0} \left[ \frac{\sin x^2 \times 2 \sin^2 \left( \frac{x^2}{2} \right)}{x^6} \right] \left[ \because 1 - \cos A = 2 \sin^2 \left( \frac{A}{2} \right) \right]\]
\[ = 2 \lim_{x \to 0} \left[ \frac{\sin x^2}{x^2} \times \frac{\sin \left( \frac{x^2}{2} \right)}{2 \times \frac{x^2}{2}} \times \frac{\sin \left( \frac{x^2}{2} \right)}{2 \times \frac{x^2}{2}} \right]\]
\[ = \frac{2}{2 \times 2}\]
\[ = \frac{1}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.7 [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.7 | Q 17 | पृष्ठ ५०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\] 


\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\] 


\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\] 


\[\lim_{x \to 1/4} \frac{4x - 1}{2\sqrt{x} - 1}\] 


\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\] 


\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\] 


\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]


\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]


\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]


\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]


\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\] 


\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\] 


\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\] 


\[\lim_{x \to \infty} \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}}\]


\[\lim_{x \to 0} \frac{\tan^2 3x}{x^2}\] 


\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\] 


\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 2x - \cos 8x}\]


\[\lim_{x \to 0} \frac{\sin \left( a + x \right) + \sin \left( a - x \right) - 2 \sin a}{x \sin x}\] 


\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos 2x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\] 


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\] 

 


\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\] 


\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to


\[\lim_{n \to \infty} \left\{ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} + . . . + \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right\}\]is equal to


Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`


Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`


Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`


If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.


If f(x) = `{{:(1 if x  "is rational"),(-1 if x  "is rational"):}` is continuous on ______.


Evaluate the following limit :

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit:

`lim_(x->5)[(x^3-125)/(x^5-3125)]`


Evaluate the Following limit:

`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×