मराठी

Let ,when,and iff(x)={kcosxπ-2x,when x≠π23,x=π2 and if f(x)=f(π2) find the value of k. - Mathematics

Advertisements
Advertisements

प्रश्न

Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when"  x ≠ pi/2),(3",", x = pi/2  "and if"  f(x) = f(pi/2)):}` find the value of k.

बेरीज

उत्तर

Given, `f(x) = {{:((k cos x)/(pi - 2x)",",  x ≠ pi/2),(3",",  x = pi/2):}`

L.H.L, `f(x) = lim_(x -> pi^-/2) (k cos x)/(pi - 2x)`

= `lim_(h -> 0) (k cos (pi/2 - h))/(pi - 2(pi/2 - h))`

= `lim_(h -> 0) (k sin h)/(pi - pi + 2h)`

= `lim_(h -> 0) (k sin h)/(2h)`

= `l/2 * 1`

= `k/2`  ......`[because  lim_(h -> 0) sinh/h = 1]`

R.H.L. `f(x) = lim_(x -> pi^+/2) (k cos x)/(pi - 2x)`

= `lim_(h -> 0) (k cos (pi/2 + h))/(pi - 2(pi/2 + h))`

= `lim_(h -> 0) (-k sin h)/(pi - pi - 2h)`

= `lim_(h -> 0) (-k sin h)/(-2h)`

= `k/2`  ....`[because  lim_(h -> 0)  sinh/h = 1]`

We are given that `lim_(x -> pi/2) f(x)` = 3

So, `k/2` = 3

⇒ k = 6

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise [पृष्ठ २४२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise | Q 52 | पृष्ठ २४२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Suppose f(x)  = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}`  and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?


\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\] 


\[\lim_{x \to 0} 9\] 


\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\] 


\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]


\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\] 


\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]


\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\] 


\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\] 


\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\] 


\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\] 


\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\] 


\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\] 


\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\] 


\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]


\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]


\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]


\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


\[\lim_{x \to 0} \frac{x}{\tan x} is\] 


\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to


The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\] 


If `f(x) = {{:(x + 2",",  x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit:

`\underset{x->3}{lim}[sqrt(x +6)/(x)]`


Evaluate the Following limit:

`lim_(x->7)[[(root[3][x] - root[3][7])(root[3][x] + root[3][7])] / (x - 7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×