Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\]
उत्तर
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\]
\[ = \lim_{h \to 0} \frac{1 - \tan \left( \frac{\pi}{4} + h \right)}{\left( \frac{\pi}{4} + h - \frac{\pi}{4} \right)}\]
\[ = \lim_{h \to 0} \frac{1 - \left( \frac{1 + \tan h}{1 - \tan h} \right)}{h} \left[ \because \tan \left( \frac{\pi}{4} + 0 \right) = \frac{1 + \tan \theta}{1 - \tan \theta} \right]\]
\[ = \lim_{h \to 0} \frac{1 - \tan h - 1 - \tan h}{\left( 1 - \tan h \right) h}\]
\[ = \lim_{h \to 0} \frac{- 2 \tan h}{h\left( 1 - \tan h \right)} \left[ \because \lim_{h \to 0} \frac{\tan h}{h} = 1 \right]\]
\[ \Rightarrow \frac{- 2}{1 - 0} = - 2\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\]
\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]
\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\]
\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\]
\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a.
If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a.
\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\]
\[\lim_{n \to \infty} \left[ \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + . . . + \frac{1}{3^n} \right]\]
\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\]
\[\lim_{x \to 0} \frac{\tan^2 3x}{x^2}\]
\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\]
\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\]
\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\]
\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]
\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\]
Evaluate the following limit:
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left( \frac{\pi}{2} - x \right)^2}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\]
\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\]
\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
\[\lim_{x \to 0} \frac{\sin 2x}{x}\]
\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\]
\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to
\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]is real to
\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to
The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]
The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is
The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is
If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\] where denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]
Evaluate the following limit :
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limits: `lim_(x -> 3) [sqrt(x + 6)/x]`
Evaluate the Following limit:
`lim_(x->7)[[(root[3][x] - root[3][7])(root[3][x] + root[3][7])] / (x - 7)]`