मराठी

Lim N → ∞ [ 1 3 + 2 3 + . . . N 3 ( N − 1 ) 4 ] - Mathematics

Advertisements
Advertisements

प्रश्न

limn[13+23+...n3(n1)4] 

उत्तर

limn[13+23+...+n3(n1)4]
=limn[[n(n+1)2]2(n1)4]
=limn[n2(n+1)24(n1)4]

Dividing the numerator and the denominator by n4

limn[n2(n+1)2n44(n1)4n4]
=limn[(n+1)2n24(n1n)4]
=limn[(1+1n)24(11n)4]
 When n, then 1n0.
(1+0)24(10)4
=14 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.6 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.6 | Q 17 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

limxax+ax+a 


limx0ax+bcx+d,d0


limx2x38x24 


limx1/28x3+12x+1 


limx2x22x2+2x4


limx1/44x12x1 


limx27(x1/3+3)(x1/33)x27 


limx1x3+1x+1 


limx[x{x2+1x21}] 


limx[x4+7x3+46x+ax4+6] where a is a non-zero real number. 


f(x)=ax2+bx2+1,limx0f(x)=1 and limxf(x)=1,then prove that f(−2) = f(2) = 1


limx0sinx2(1cosx2)x6 


limx0sin5xsin3xsinx 


limx0x3cotx1cosx 


limx0sin(3+x)sin(3x)x 


limx01cos5x1cos6x


limx0sinax+bxax+sinbx


limxπ33tanxπ3x


limxπ5+cosx2(πx)2 


limx11+cosπx(1x)2 


Evaluate the following limit:

limxπ1sinx2cosx2(cosx4sinx4)

 


Write the value of limx1x[x]. 


If limx1x+x2+x3+...+xnnx1=5050 then n equal


limx01+x1x is equal to 


limnn!(n+1)!+n!  is equal to


limx21+2+x3x2 is equal to 


The value of limn{1+2+3+...+nn+2n2} 


limx1[x1] where [.] is the greatest integer function, is equal to 


limx|x|x  is equal to 


Which of the following function is not continuous at x = 0?


Evaluate: limx1(1+x)6-1(1+x)2-1


Evaluate the following limits: limx3[x+6x]


Evaluate the following limit :

limx7[(x3-73)(x3+73)x-7]


Evaluate the following limit:

limx5[x3-125x5-3125]


Evaluate the following limit:

limx7[(x3-73)(x3+73)x-7]


Evaluate the following limit:

limx3[x+6x]


Evaluate the following limit:

limx7[(x3-73)(x3+73)x-7]


Evaluate the following limit.

limx3[x+6x]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.