हिंदी

Lim X → 3 ∑ N R = 1 X R − ∑ N R = 1 3 R X − 3 is Real to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]is real to

विकल्प

  • \[\frac{\left( 2n - 1 \right) \times 3^n}{4}\] 

  • \[\frac{\left( 2n - 1 \right) \times 3^n + 1}{4}\]

  • \[\left( 2n - 1 \right) 3^n + 1\] 

  • \[\frac{\left( 2n - 1 \right) \times 3^n - 1}{4}\] 

MCQ

उत्तर

\[\frac{\left( 2n - 1 \right) \times 3^n + 1}{4}\]

\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]
\[ = \lim_{x \to 3} \frac{x^1 + x^2 + x^3 + . . . . . . + x^n - \left( 3^1 + 3^2 + 3^3 . . . . . 3^n \right)}{x - 3}\]
\[ = \lim_{x \to 3} \frac{x - 3}{x - 3} + \frac{x^2 - 3^2}{x - 3} + \frac{x^3 - 3^3}{x - 3} + . . . . \frac{x^n - 3^n}{x - 3}\]
\[ = 1 + 2 \times 3 + 3 \times 3^2 + . . . . . + n 3^{n - 1} \left[ \because \frac{x^n - a^n}{x - a} = n a^{n - 1} \right]\] 

This series is an AGP of the form given below:
S = 1 + 2r + 3r2........nrn–1

\[S = \frac{1 - r^n}{\left( 1 - r \right)^2} - \frac{n r^n}{1 - r}\]
\[r = 3, a = 1 d = 1\]
\[ = \frac{1 - 3^n + 2n 3^n}{4}\]
\[ = \frac{3^n \left( 2n - 1 \right) + 1}{4}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.13 [पृष्ठ ७९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.13 | Q 22 | पृष्ठ ७९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find `lim_(x -> 5) f(x)`, where f(x)  = |x| - 5


\[\lim_{x \to - 5} \frac{2 x^2 + 9x - 5}{x + 5}\] 


\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\] 


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\] 


\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\] 


\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\] 


\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]


\[\lim_{n \to \infty} \left[ \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + . . . + \frac{1}{3^n} \right]\] 


\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number. 


\[f\left( x \right) = \frac{a x^2 + b}{x^2 + 1}, \lim_{x \to 0} f\left( x \right) = 1\] and \[\lim_{x \to \infty} f\left( x \right) = 1,\]then prove that f(−2) = f(2) = 1


\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\] 


\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\] 


\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\] 

 


\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]


\[\lim_{x \to \pi} \frac{\sin x}{\pi - x}\]


Evaluate the following limit:

\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]


\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\] 


\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]


\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]


\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]


\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]

 

\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\] 


\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\] 


If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]


\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to 


If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\]  where  denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]  


Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit:

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?


Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`


If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.


`1/(ax^2 + bx + c)`


If `f(x) = {{:(x + 2",",  x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists


If f(x) = `{{:(1 if x  "is rational"),(-1 if x  "is rational"):}` is continuous on ______.


Evaluate the Following limit:

`lim_(x->5) [(x^3 -125)/(x^5-3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×