हिंदी

If lim x → 0 k x c o s e c x = lim x → 0 x c o s e c k x , - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[\lim_{x \to 0} kx  cosec x = \lim_{x \to 0} x  cosec kx,\] 

उत्तर

\[\lim_{x \to 0} kx . cosec x = \lim_{x \to 0} x cosec kx\]
\[ \Rightarrow \lim_{x \to 0} \left[ \frac{kx}{\sin x} \right] = \lim_{x \to 0} \left[ \frac{x}{\sin \left( kx \right)} \right]\]
\[ \Rightarrow k \lim_{x \to 0} \left[ \frac{x}{\sin x} \right] = \lim_{x \to 0} \left[ \frac{kx}{\sin \left( kx \right)} \right] \times \frac{1}{k}\]
\[ \Rightarrow k = \frac{1}{k}\]
\[ \Rightarrow k^2 = 1\]
\[ \Rightarrow k = \pm 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.7 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.7 | Q 63 | पृष्ठ ५१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\] 


\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]


\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]


\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\] 


\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]


\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\] 


\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\] 


\[\lim_{n \to \infty} \left[ \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!} \right]\] 


\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\] 


Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\] 


\[\lim_{x \to 0} \frac{\sin 3x}{5x}\] 


\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\] 


\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\] 


\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\] 


\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]


\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\] 


\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\] 


\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]


\[\lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}\]


\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left( \frac{\pi}{2} - x \right)^2}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]

 

Write the value of \[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\]  is equal at 


\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to


\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\] 


If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal


The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\] 


The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is 


\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\]  is equal to 


If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\]  where  denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]  


if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.


Let f(x) = `{{:(3^(1/x);   x < 0","                "then at"  x = 0),(lambda[x];   x ≥ 0","   lambda ∈ "R"):}`

Evaluate the Following limit:

`lim_(x->5) [(x^3 -125)/(x^5-3125)]`


Evaluate the following limit.

`lim_(x->3)[sqrt(x + 6)/x]`


Evaluate the Following limit: 

`lim_ (x -> 3) [sqrt (x + 6)/ x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×