Advertisements
Advertisements
प्रश्न
Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\]
उत्तर
Consider the identity \[\left( k + 1 \right)^5 - k^5 = 5 k^4 + 10 k^3 + 10 k^2 + 5k + 1\]
Putting k = 1, 2, 3,..., n in (1) and then adding the equations, we have
\[\left( n + 1 \right)^5 - 1 = 5 \sum^n_{k = 1} k^4 + 10 \sum^n_{k = 1} k^3 + 10 \sum^n_{k = 1} k^2 + 5 \sum^n_{k = 1} k + \sum^n_{k = 1} 1\]
\[ \Rightarrow n^5 + 5 n^4 + 10 n^3 + 10 n^2 + 5n = 5 \sum^n_{k = 1} k^4 + \frac{10 n^2 \left( n + 1 \right)^2}{4} + \frac{10n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + \frac{5n\left( n + 1 \right)}{2} + n\]
\[ \Rightarrow 5 \sum^n_{k = 1} k^4 = n^5 + 5 n^4 + 10 n^3 + 10 n^2 + 4n - \frac{5 n^2 \left( n + 1 \right)^2}{2} - \frac{5n\left( n + 1 \right)\left( 2n + 1 \right)}{3} - \frac{5n\left( n + 1 \right)}{2}\]
\[ \Rightarrow 5 \sum^n_{k = 1} k^4 = n^5 + \frac{5 n^4}{2} + \frac{5 n^3}{3} - \frac{n}{6}\]
This expression on further simplification gives \[\sum^n_{k = 1} k^4 = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)\left( 3 n^2 + 3n - 1 \right)}{30}\]
\[\therefore \lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\]
\[ = \lim_{n \to \infty} \frac{n\left( n + 1 \right)\left( 2n + 1 \right)\left( 3 n^2 + 3n - 1 \right)}{30 n^5} - \lim_{n \to \infty} \frac{n^2 \left( n + 1 \right)^2}{4 n^5}\]
\[ = \frac{1}{30} \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)\left( 2 + \frac{1}{n} \right)\left( 3 + \frac{3}{n} - \frac{1}{n^2} \right) - \frac{1}{4} \lim_{n \to \infty} \frac{1}{n} \left( 1 + \frac{1}{n} \right)^2 \]
\[ = \frac{1}{30} \times \left( 1 + 0 \right) \times \left( 2 + 0 \right) \times \left( 3 + 0 - 0 \right) - \frac{1}{4} \times 0 \left( \lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^2} = . . . = 0 \right)\]
\[= \frac{1}{30} \times 6 - 0\]
\[ = \frac{1}{5}\]
APPEARS IN
संबंधित प्रश्न
Find `lim_(x -> 5) f(x)`, where f(x) = |x| - 5
\[\lim_{x \to - 1} \frac{x^3 - 3x + 1}{x - 1}\]
\[\lim_{x \to 0} \frac{3x + 1}{x + 3}\]
\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\]
\[\lim_{x \to \sqrt{3}} \frac{x^2 - 3}{x^2 + 3 \sqrt{3}x - 12}\]
\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\]
\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\]
\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]
\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\]
\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\]
\[\lim_{x \to 0} \frac{\sin 3x}{5x}\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\]
\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\]
\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\]
\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\]
\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]
Evaluate the following limit:
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\]
\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]
\[\lim_{x \to 0} \left( \cos x \right)^{1/\sin x}\]
\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
Write the value of \[\lim_{x \to 0} \frac{\sin x^\circ}{x} .\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim 2_{h \to 0} \left\{ \frac{\sqrt{3} \sin \left( \pi/6 + h \right) - \cos \left( \pi/6 + h \right)}{\sqrt{3} h \left( \sqrt{3} \cos h - \sin h \right)} \right\}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to
\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to
\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to
The value of \[\lim_{x \to \infty} \frac{n!}{\left( n + 1 \right)! - n!}\]
Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.
Evaluate the following limits: `lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`
Evaluate the following Limits: `lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`
`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?
Evaluate the Following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the following limit:
`\underset{x->3}{lim}[sqrt(x +6)/(x)]`