Advertisements
Advertisements
प्रश्न
Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\]
उत्तर
Consider the identity \[\left( k + 1 \right)^5 - k^5 = 5 k^4 + 10 k^3 + 10 k^2 + 5k + 1\]
Putting k = 1, 2, 3,..., n in (1) and then adding the equations, we have
\[\left( n + 1 \right)^5 - 1 = 5 \sum^n_{k = 1} k^4 + 10 \sum^n_{k = 1} k^3 + 10 \sum^n_{k = 1} k^2 + 5 \sum^n_{k = 1} k + \sum^n_{k = 1} 1\]
\[ \Rightarrow n^5 + 5 n^4 + 10 n^3 + 10 n^2 + 5n = 5 \sum^n_{k = 1} k^4 + \frac{10 n^2 \left( n + 1 \right)^2}{4} + \frac{10n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + \frac{5n\left( n + 1 \right)}{2} + n\]
\[ \Rightarrow 5 \sum^n_{k = 1} k^4 = n^5 + 5 n^4 + 10 n^3 + 10 n^2 + 4n - \frac{5 n^2 \left( n + 1 \right)^2}{2} - \frac{5n\left( n + 1 \right)\left( 2n + 1 \right)}{3} - \frac{5n\left( n + 1 \right)}{2}\]
\[ \Rightarrow 5 \sum^n_{k = 1} k^4 = n^5 + \frac{5 n^4}{2} + \frac{5 n^3}{3} - \frac{n}{6}\]
This expression on further simplification gives \[\sum^n_{k = 1} k^4 = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)\left( 3 n^2 + 3n - 1 \right)}{30}\]
\[\therefore \lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\]
\[ = \lim_{n \to \infty} \frac{n\left( n + 1 \right)\left( 2n + 1 \right)\left( 3 n^2 + 3n - 1 \right)}{30 n^5} - \lim_{n \to \infty} \frac{n^2 \left( n + 1 \right)^2}{4 n^5}\]
\[ = \frac{1}{30} \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)\left( 2 + \frac{1}{n} \right)\left( 3 + \frac{3}{n} - \frac{1}{n^2} \right) - \frac{1}{4} \lim_{n \to \infty} \frac{1}{n} \left( 1 + \frac{1}{n} \right)^2 \]
\[ = \frac{1}{30} \times \left( 1 + 0 \right) \times \left( 2 + 0 \right) \times \left( 3 + 0 - 0 \right) - \frac{1}{4} \times 0 \left( \lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^2} = . . . = 0 \right)\]
\[= \frac{1}{30} \times 6 - 0\]
\[ = \frac{1}{5}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to a} \frac{\sqrt{x} + \sqrt{a}}{x + a}\]
\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]
\[\lim_{x \to 0} 9\]
\[\lim_{x \to 2} \left( 3 - x \right)\]
\[\lim_{x \to - 1} \frac{x^3 - 3x + 1}{x - 1}\]
\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\]
\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\]
\[\lim_{x \to \sqrt{3}} \frac{x^2 - 3}{x^2 + 3 \sqrt{3}x - 12}\]
\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\]
\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\]
\[\lim_{x \to 1} \frac{1 - x^{- 1/3}}{1 - x^{- 2/3}}\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]
\[\lim_{x \to 0} \frac{\sin 3x}{5x}\]
\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\]
\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\]
\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\]
\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\]
\[\lim_{x \to 0} \frac{\sin x^2 \left( 1 - \cos x^2 \right)}{x^6}\]
\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]
\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\]
\[\lim_{x \to \pi} \frac{\sin x}{\pi - x}\]
Evaluate the following limit:
\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]
\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
\[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\]
\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals
\[\lim_{n \to \infty} \left\{ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} + . . . + \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right\}\]is equal to
\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\]
If \[f\left( x \right) = \left\{ \begin{array}{l}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0\end{array}, \right.\] then \[\lim_{x \to 0} f\left( x \right)\] equals
\[\lim_{x \to \infty} a^x \sin \left( \frac{b}{a^x} \right), a, b > 1\] is equal to
Evaluate the following limit:
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
`1/(ax^2 + bx + c)`
Evaluate the following limit:
`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`