English

Lim θ → 0 Sin 4 θ Tan 3 θ - Mathematics

Advertisements
Advertisements

Question

\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\] 

Solution

\[\lim_\theta \to 0 \left[ \frac{\sin 4\theta}{\tan 3\theta} \right]\]
\[ = \lim_\theta \to 0 \left[ \frac{\sin 4\theta}{4\theta} \times \frac{4\theta}{\frac{\tan 3\theta}{3\theta} \times 3\theta} \right]\]
\[ = \frac{4}{3}\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.7 [Page 51]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.7 | Q 50 | Page 51

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find `lim_(x -> 5) f(x)`, where f(x)  = |x| - 5


\[\lim_{x \to - 1} \frac{x^3 - 3x + 1}{x - 1}\]


\[\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^2 + \sqrt{2}x - 4}\]


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\] 


\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\] 


\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\] 


If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a


\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\] 


\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\] 


\[\lim_{x \to 0} \frac{\sin 3x}{5x}\] 


\[\lim_{x \to 0} \frac{\sin x \cos x}{3x}\] 


\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\] 


\[\lim_{x \to 0} \frac{\sin x^2 \left( 1 - \cos x^2 \right)}{x^6}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 2x - \cos 8x}\]


\[\lim_{x \to 0} \frac{1 - \cos 2x}{3 \tan^2 x}\] 


\[\lim_{x \to 0} \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x}\]


If  \[\lim_{x \to 0} kx  cosec x = \lim_{x \to 0} x  cosec kx,\] 


\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]


\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\] 


\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]


\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]


\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\] 


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]


Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]


\[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


Write the value of \[\lim_{x \to 0} \frac{\sin x^\circ}{x} .\]


\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\]  is equal to


The value of \[\lim_{x \to \infty} \frac{n!}{\left( n + 1 \right)! - n!}\] 


If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\]  where  denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]  


Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.


If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.


Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when"  x ≠ pi/2),(3",", x = pi/2  "and if"  f(x) = f(pi/2)):}` find the value of k.


Evaluate the following limits: `lim_(x ->3) [sqrt(x + 6)/x]`


Evaluate the following limit:

`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×