English

Lim X → 0 [ X 2 Sin X 2 ] - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\] 

Solution

\[\text{ When } x \to 0, \text{ then } x^2 \to 0 .\] 

Let \[\theta = x^2\] 

⇒\[\lim_\theta \to 0 \left( \frac{\theta}{\sin\theta} \right)\]

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.7 [Page 49]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.7 | Q 3 | Page 49

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]


\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]


\[\lim_{x \to - 1} \frac{x^3 - 3x + 1}{x - 1}\]


\[\lim_{x \to 2} \left( \frac{x}{x - 2} - \frac{4}{x^2 - 2x} \right)\] 


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\] 


\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\] 


\[\lim_{x \to \infty} \sqrt{x + 1} - \sqrt{x}\] 


\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\] 


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\] 


\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\] 


\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]


\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\] 


\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\] 


\[\lim_\theta \to 0 \frac{1 - \cos 4\theta}{1 - \cos 6\theta}\] 


\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]


\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]


\[\lim_{x \to \pi} \frac{\sin x}{\pi - x}\]


\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]

 

Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\] 


\[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


\[\lim_{x \to 0} \frac{\sin 2x}{x}\] 


\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\]  is equal at 


\[\lim 2_{h \to 0} \left\{ \frac{\sqrt{3} \sin \left( \pi/6 + h \right) - \cos \left( \pi/6 + h \right)}{\sqrt{3} h \left( \sqrt{3} \cos h - \sin h \right)} \right\}\] 


\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to 


If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]


\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to 


The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is 


Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Let f(x) = `{{:(3^(1/x);   x < 0","                "then at"  x = 0),(lambda[x];   x ≥ 0","   lambda ∈ "R"):}`

Evaluate the following limit:

`lim_(x->7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limit.

`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`


Evaluate the following limit:

`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×