Advertisements
Advertisements
प्रश्न
Make y the subject of the formula x = `(1 - y^2)/(1 + y^2)`. Find y if x = `(3)/(5)`
उत्तर
x = `(1 - y^2)/(1 + y^2)`
⇒ x (1 + y2) = 1 - y2
⇒ x + y2 = 1 - y2
⇒ xy2 + y2 = 1 - x
⇒ y2 (x + 1) = 1 - x
⇒ y2 = `(1 - x)/(1 + x)`
⇒ y = `sqrt((1 - x)/(1 + x)`
Substituting x = `(3)/(5)`, we get
y = `sqrt((1 - 3/5)/(1 + 3/5)`
= `sqrt(2/8)`
= `sqrt(1/4)`
= `(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Make a formula for the statement:"The reciprocal of focal length f is equal to the sum of reciprocals of the object distance u and the image distance v."
A man bought 25a articles at 30p paisa each and sold them at 20q paisa each. Find his profit in rupees.
Make N the subject of formula I = `"NG"/("R" + "Ny")`
Make d the subject of formula S = `"n"/(2){2"a" + ("n" - 1)"d"}`
Make A the subject of formula R = `("m"_1"B" + "m"_2"A")/("m"_1 + "m"_2)`
Make h the subject of the formula K = `sqrt("hg"/"d"^2 - "a"^2`. Find h, when k = -2, a = -3, d = 8 and g = 32.
Make g the subject of the formula v2 = u2 - 2gh. Find g, when v = 9.8, u = 41.5 and h = 25.4.
"The volume of a cone V is equal to the product of one third of π and square of radius r of the base and the height h". Express this statement as a formula. Make r the subject formula. Find r, when V = 1232cm3, π = `(22)/(7)`, h = 24cm.
The total energy E possess by a body of Mass 'm', moving with a velocity 'v' at a height 'h' is given by: E = `(1)/(2) "m" "u"^2 + "mgh"`. Make 'm' the subject of formula.
If s = `"n"/(2)[2"a" + ("n" - 1)"d"]`, the n express d in terms of s, a and n. find d if n = 3, a = n + 1 and s = 18.