Advertisements
Advertisements
प्रश्न
Make z the subject of the formula y = `(2z + 1)/(2z - 1)`. If x = `(y + 1)/(y - 1)`, express z in terms of x, and find its value when x = 34.
उत्तर
y = `(2z + 1)/(2z - 1)`
⇒(2z - 1) y = 2z + 1
⇒ 2zy - y = 2z + 1
⇒ 2zy - 2z = 1 + y
⇒ z(2y - 1) = 1 + y
⇒ z = `(1 + y)/(2y - 1)`
⇒ x = `(y + 1)/(y - 1)`
⇒ x = `(((2z + 1)/(2z - 1)) + 1)/(((2z + 1)/(2z - 1)) - 1)`
= `(2z + 1 + 2z - 1)/(2z + 1 - 2z + 1)`
= `(4z)/(2)`
= 2z
⇒ z = `x/(2)`
Substituting x = 34, we get
z = `(34)/(2)`
= 17.
APPEARS IN
संबंधित प्रश्न
The fahrenheit temperature, F is 32 more than nine -fifths of the centigrade temperature C. Express this relation by a formula.
The arithmetic mean M of the five numbers a, b, c, d, e is equal to their sum divided by the number of quantities. Express it as a formula.
Make L the subject of formula T = `2pisqrt("L"/"G")`
Make a the subject of formula x = `sqrt(("a" + "b")/("a" - "b")`
Make N the subject of formula I = `"NG"/("R" + "Ny")`
Make R2 the subject of formula R2 = 4π(R12 - R22)
Make k the subject of formula T = `2pisqrt(("k"^2 + "h"^2)/"hg"`
Make y the subject of the formula `x/"a" + y/"b" `= 1. Find y, when a = 2, b = 8 and x = 5.
Make c the subject of the formula a = b(1 + ct). Find c, when a = 1100, b = 100 and t = 4.
The total energy E possess by a body of Mass 'm', moving with a velocity 'v' at a height 'h' is given by: E = `(1)/(2) "m" "u"^2 + "mgh"`. Find m, if v = 2, g = 10, h = 5 and E = 104.