Advertisements
Advertisements
प्रश्न
Multiply: `2"a"^3-3"a"^2"b"` and `-1/2"ab"^2`
उत्तर
`(2"a"^3-3"a"^2"b")(-1/2"ab"^2)`
= `-1/2"ab"^2 (2"a"^3-3"a"^2"b")`
= `2"a"^3xx-1/2"ab"^2-3"a"^2"b"xx-1/2"ab"^2`
= `-"a"^4"b"^2+3/2"a"^3"b"^3`
APPEARS IN
संबंधित प्रश्न
Find the areas of rectangles with the following pairs of monomials as their lengths and breadths, respectively.
(p, q); (10m, 5n); (20x2, 5y2); (4x, 3x2); (3mn, 4np)
Complete the table of products.
First monomial→ |
2x |
–5y |
3x2 |
–4xy |
7x2y |
–9x2y2 |
Second monomial ↓ |
||||||
2x | 4x2 | ... | ... | ... | ... | ... |
–5y | ... | ... | –15x2y | ... | ... | ... |
3x2 | ... | ... | ... | ... | ... | ... |
– 4xy | ... | ... | ... | ... | ... | ... |
7x2y | ... | ... | ... | ... | ... | ... |
–9x2y2 | ... | ... | ... | ... | ... | ... |
Obtain the product of a, − a2, a3
Multiply : 8ab2 by − 4a3b4
Multiply: 2m2 − 3m − 1 and 4m2 − m − 1
Multiply: `-3/2"x"^5"y"^3` and `4/9"a"^2"x"3"y"`
The length of a rectangle is `1/3` of its breadth. If its perimeter is 64 m, then find the length and breadth of the rectangle.
Volume of a rectangular box (cuboid) with length = 2ab, breadth = 3ac and height = 2ac is ______.
Multiply the following:
–5a2bc, 11ab, 13abc2
Multiply the following:
6mn, 0mn