Advertisements
Advertisements
प्रश्न
Multiply and then evaluate:
(x – 2y + z) and (x – 3z); when x = − 2, y = − 1 and z = 1.
उत्तर
(x − 2y + z) × (x − 3z)
= x (x − 3z) − 2y (x − 3z) + z (x − 3z)
= x2 − 2zx − 2xy + 6yz − 3z2
Verification:
When x = − 2, y = − 1, z = 1
L.H.S. = (x − 2y + z) × (x − 3z)
= [− 2 − 2 × (− 1) × 1] × [− 2 − 3 × 1]
= (− 2 + 2 + 1) × (− 2 − 3)
= 1 × (− 5)
= − 5
R.H.S. = x2 − 2zx − 2xy + 6yz − 3z2
= (− 2)2 − 2 (1) (− 2) − 2 (− 2) (− 1) + 6 (− 1) (1) − 3(1)2
= 4 + 4 − 4 − 6 − 3
= 8 − 13
= − 5
∴ L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Fill in the blank, when:
x = 3, y = 6, z = 18, a = 2, b = 8, c = 32 and d = 0.
y − x = ...........
Fill in the blank, when:
x = 3, y = 6, z = 18, a = 2, b = 8, c = 32 and d = 0.
y × d = .............
If a = 3, b = 0, c = 2 and d = 1, find the value of a2 + 2b2 − 3c2
Evaluate:
6m – (4m – m)
Simplify:
x − [y + {x − (y + x)}]
Fill in the blank:
7x + 2z + 4y − 3 = − 3 + 4y + (.............)
If P = − 12x2 – 10xy + 5y2, Q = 7x2 + 6xy + 2y2, and R = 5x2 + 2xy + 4y2 ; find P + Q + R
Multiply and then evaluate:
(x2 – y) and (xy – y2); when x = 1 and y = 2.
Simplify:
2 (3x2 – 4x – 8) – (3 – 5x – 2x2)
If x = − 3, find the value of 2x3 + 8x2 – 15.