English

Multiply and Then Evaluate: (X – 2y + Z) and (X – 3z); When X = − 2, Y = − 1 and Z = 1. - Mathematics

Advertisements
Advertisements

Question

Multiply and then evaluate:

(x – 2y + z) and (x – 3z); when x = − 2, y = − 1 and z = 1.

Sum

Solution

(x − 2y + z) × (x − 3z)

= x (x − 3z) − 2y (x − 3z) + z (x − 3z)

= x2 − 2zx − 2xy + 6yz − 3z2

Verification:

When x = − 2, y = − 1, z = 1

L.H.S. = (x − 2y + z) × (x − 3z)

= [− 2 − 2 × (− 1) × 1] × [− 2 − 3 × 1]

= (− 2 + 2 + 1) × (− 2 − 3)

= 1 × (− 5)

= − 5

R.H.S. = x2 − 2zx − 2xy + 6yz − 3z2

= (− 2)2 − 2 (1) (− 2) − 2 (− 2) (− 1) + 6 (− 1) (1) − 3(1)2

= 4 + 4 − 4 − 6 − 3

= 8 − 13

= − 5

∴ L.H.S. = R.H.S.

shaalaa.com
Concept of Substitution
  Is there an error in this question or solution?
Chapter 20: Substitution (Including Use of Brackets as Grouping Symbols) - Revision Exercise

APPEARS IN

Selina Mathematics [English] Class 6
Chapter 20 Substitution (Including Use of Brackets as Grouping Symbols)
Revision Exercise | Q 6.3
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×