Advertisements
Advertisements
Question
Multiply and then evaluate:
(x – 2y + z) and (x – 3z); when x = − 2, y = − 1 and z = 1.
Solution
(x − 2y + z) × (x − 3z)
= x (x − 3z) − 2y (x − 3z) + z (x − 3z)
= x2 − 2zx − 2xy + 6yz − 3z2
Verification:
When x = − 2, y = − 1, z = 1
L.H.S. = (x − 2y + z) × (x − 3z)
= [− 2 − 2 × (− 1) × 1] × [− 2 − 3 × 1]
= (− 2 + 2 + 1) × (− 2 − 3)
= 1 × (− 5)
= − 5
R.H.S. = x2 − 2zx − 2xy + 6yz − 3z2
= (− 2)2 − 2 (1) (− 2) − 2 (− 2) (− 1) + 6 (− 1) (1) − 3(1)2
= 4 + 4 − 4 − 6 − 3
= 8 − 13
= − 5
∴ L.H.S. = R.H.S.
APPEARS IN
RELATED QUESTIONS
Fill in the blank, when:
x = 3, y = 6, z = 18, a = 2, b = 8, c = 32 and d = 0.
`"y"/"x"` = ...........
Fill in the blank, when:
x = 3, y = 6, z = 18, a = 2, b = 8, c = 32 and d = 0.
z − a − b = ................
Find the value of 3a − 2b, when a = 8 and b = 10
If x = 2, y = 5 and z = 4, find the value of the following:
`"x"/(2"x"^2)`
Simplify:
− (− 4a − 8a)
Simplify:
x − [y + {x − (y + x)}]
Insert the bracket as indicated:
m + n − p = − (.............)
If x = a2 – bc, y = b2 – ca, and z = c2 – ab; find the value of ay – bx + cz
Simplify:
5 (x + 3y) – 2 (3x – 4y)
Simplify:
3x – 8 (5x – 10)