हिंदी

OAB is a sector of the circle having centre at O and radius 12 cm. If m∠AOB = 45°, find the difference between the area of sector OAB and triangle AOB. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

OAB is a sector of the circle having centre at O and radius 12 cm. If m∠AOB = 45°, find the difference between the area of sector OAB and triangle AOB.

योग

उत्तर


Here, r = 12 cm

θ = 45°

= `(45 xx pi/180)^"c"`

= `(pi/4)^"c"`

Draw AM ⊥ OB
In ΔOAM,

sin 45° = `"AM"/12`

∴ `1/sqrt(2) = "AM"/12`

∴ AM = `12/sqrt(2) xx sqrt(2)/sqrt(2) = 6sqrt(2)"cm"`

∴ A (sector OAB) – A(ΔAOB)

= `1/2"r"^2theta - 1/2 xx "OB" xx "AM"`

= `1/2 xx (12)^2 xx pi/4 - 1/2 xx 12 xx 6sqrt(2)`

= `1/2 xx 144 xx pi/4 - 36sqrt(2)`

= `18pi - 36sqrt(2)`

= `18(pi - 2sqrt(2))"sq.cm"`.

shaalaa.com
Area of a Sector of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Angle and its Measurement - EXERCISE 1.2 [पृष्ठ ११]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Angle and its Measurement
EXERCISE 1.2 | Q 7 | पृष्ठ ११
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×