Advertisements
Advertisements
प्रश्न
Obtain an expression for maximum safety speed with which a vehicle can be safely driven along a curved banked road.
Show that the angle of banking is independent of the mass of the vehicle.
उत्तर
- The vertical section of a vehicle on a curved road (considering friction) of radius ‘r’ banked at an angle θ with the horizontal is shown in the figure.
If the vehicle is running exactly at the optimum speed, then the forces acting on the vehicle are
- Weight mg acting vertically downwards
- Normal reaction N acting perpendicular to the road.
- But in practice, vehicles never travel exactly with this speed.
- Hence, for speeds other than this, the component of the force of static friction between the road and the tires helps us, up to a certain limit.
- For maximum possible speed,
The component N sinθ is less than the centrifugal force `(mv^2)/r`.
∴ `(mv^2)/r` > N sinθ
Banked road: upper-speed limit - In this case, the direction of the force of static friction (fs) between the road and the tires is directed along with the inclination of the road downwards.
- The horizontal component (fs cos θ) is parallel to Nsinθ.
These two forces take care of the necessary centripetal force (or balance the centrifugal force).
∴ `(mv^2)/r = N sinθ + f_s cos θ` …(1) - The vertical component, N cosθ balances the component fs sin θ and weight mg.
∴ N cos θ = fs sinθ + mg
∴ mg = N cos θ − fs sin θ ...(2) - For maximum possible speed, fs is maximum and equal to μsN. From equations (1) and (2),
`v_max = sqrt(rg((tanθ + mu_s)/(1 - mu_stanθ)))` ...(3)
This is an expression for maximum safety speed with which a vehicle can be safely driven along a curved banked road (considering friction). - If µs = 0, then equation (3) becomes,
`v_max = sqrt(rg[(0 + tanθ)/(1 - 0tanθ)]`
∴ `v_max = sqrt(rg tanθ)` ...(4)
This is an expression of maximum safety speed with which a vehicle can be safely driven along a curved banked road (neglecting friction). - From equation (3) and equation (4), we can write,
`((tanθ + mu_s)/(1 - mu_s tanθ)) = V_max^2/(rg)` ...(5)
and `tan theta = V_max^2/(rg)`
∴ `theta = tan^-1(V_max^2/(rg))` ...(6)
From equation (5) and equation (6), angle of banking is independent of the mass of the vehicle.
संबंधित प्रश्न
A thin walled hollow cylinder is rolling down an incline, without slipping. At any instant, without slipping. At any instant, the ratio "Rotational K.E.: Translational K.E.: Total K.E." is ______.
Do we need a banked road for a two-wheeler? Explain.
While driving along an unbanked circular road, a two-wheeler rider has to lean with the vertical. Why is it so? With what angle the rider has to lean? Derive the relevant expression. Why such a leaning is not necessary for a four wheeler?
Somehow, an ant is stuck to the rim of a bicycle wheel of diameter 1 m. While the bicycle is on a central stand, the wheel is set into rotation and it attains the frequency of 2 rev/s in 10 seconds, with uniform angular acceleration. Calculate:
- The number of revolutions completed by the ant in these 10 seconds.
- Time is taken by it for first complete revolution and the last complete revolution.
The coefficient of static friction between a coin and a gramophone disc is 0.5. Radius of the disc is 8 cm. Initially the center of the coin is 2 cm away from the center of the disc. At what minimum frequency will it start slipping from there? By what factor will the answer change if the coin is almost at the rim? (use g = π2m/s2)
Starting from rest, an object rolls down along an incline that rises by 3 in every 5 (along with it). The object gains a speed of `sqrt10` m/s as it travels a distance of `5/3` m along the incline. What can be the possible shape/s of the object?
A big dumb-bell is prepared by using a uniform rod of mass 60 g and length 20 cm. Two identical solid spheres of mass 25 g and radius 10 cm each are at the two ends of the rod. Calculate the moment of inertia of the dumb-bell when rotated about an axis passing through its centre and perpendicular to the length.
Does the angle of banking depend on the mass of the vehicle?
During ice ballet, while in the outer rounds, why do the dancers outstretch their arms and legs.
A bend in a level road has a radius of 100m. find the maximum speed which a car turning this bend may have without skidding if the coefficient of friction between the tires and road is 0.8.
Derive an expression for maximum safety speed with which a vehicle should move along a curved horizontal road. State the significance of it.
A body weighing 0.5 kg tied to a string is projected with a velocity of 10 m/s. The body starts whirling in a vertical circle. If the radius of the circle is 0.8 m, find the tension in the string when the body is at the top of the circle.
Derive an expression for the kinetic energy of a rotating body with uniform angular velocity.
A railway track goes around a curve having a radius of curvature of 1 km. The distance between the rails is 1 m. Find the elevation of the outer rail above the inner rail so that there is no side pressure against the rails when a train goes around the curve at 36 km/hr.
A rigid body rotates with an angular momentum L. If its kinetic energy is halved, the angular momentum becomes, ______
A particle undergoes uniform circular motion. The angular momentum of the particle remains conserved about, ______
When a mass is rotating in a plane about a fixed point, its angular momentum is directed along, ______
What is the relation between torque and angular momentum?
Discuss conservation of angular momentum with example.
A uniform metallic rod rotates about its perpendicular bisector with constant angular speed. If it is heated uniformly to raise its temperature to a certain value, its speed of rotation ______.
A ring and a disc of different masses are rotating with the same kinetic energy. If we apply a retarding torque τ on the ring, it stops after completing n revolution in all. If the same torque is applied to the disc, how many revolutions would it complete in all before stopping?
What is the difference between rotation and revolution?