рд╣рд┐рдВрджреА

Obtain Tan 5ЁЭЬ╜ in Terms of Tan ЁЭЬ╜ and Show that 1 тИТ 10 Tan 2 X 10 + 5 Tan 4 X 10 = 0 - Applied Mathematics 1

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Obtain tan 5ЁЭЬ╜ in terms of tan ЁЭЬ╜ & show that `1-10tan^2  x/10+5tan^4  x/10=0`

рдпреЛрдЧ

рдЙрддреНрддрд░

we have tan `50=(sin 50)/cos 50` 

`(cos θ+i sinθ)^n=cos nθ=cos n θ+i sin nθ`

put n=5, 

∴ `cos 5θ+i sin 5θ=(cos θ+i sin θ)^5`

=`cos^5 θ+5cos^4 θ.i sin θ+10 cos^3 θ. (isin θ)^2`

`+10cos^2 θ.(isin θ)^3+5 cosθ.(isinθ)^4 + isin^5 θ`

=`[cos^5θ-10 cos^3θ.(sinθ)^2+5cosθ.(sinθ)^4]+[cos^4θ.isinθ-10 icons^2θ.(sinθ)^3+isin^5θ]`

Compare real and imaginary parts 

`cos5θ=[cos^5θ-10cos^3θ.(sinθ)^2+5cosθ.(sinθ)^4]`

`sin 5θ=+[5cos^4θ.sinθ-10cos^2θ.(sinθ)^3+sin^5θ]`

tan 5θ=`[[5cos^4θ.sinθ-10cos^2θ.(sinθ)^3+sin^5θ]]/[[cos^5θ-10cos^3θ.(sinθ)^2+5cosθ.(sinθ)^4]]` 

`tan 5θ=(5tanθ-10tan^3θ+tan^5θ)/(1-10tan^2θ+5tan^4θ)`

`"put"  θ=pi/10` 

`1-10tan^2  x/10+5tan^4  x/10=0` 

 

shaalaa.com
Separation of Real and Imaginary Parts of Logarithmic Functions
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
2016-2017 (June) CBCGS
Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Course
Use app×