Advertisements
Advertisements
Question
Obtain tan 5๐ฝ in terms of tan ๐ฝ & show that `1-10tan^2 x/10+5tan^4 x/10=0`
Solution
we have tan `50=(sin 50)/cos 50`
`(cos θ+i sinθ)^n=cos nθ=cos n θ+i sin nθ`
put n=5,
∴ `cos 5θ+i sin 5θ=(cos θ+i sin θ)^5`
=`cos^5 θ+5cos^4 θ.i sin θ+10 cos^3 θ. (isin θ)^2`
`+10cos^2 θ.(isin θ)^3+5 cosθ.(isinθ)^4 + isin^5 θ`
=`[cos^5θ-10 cos^3θ.(sinθ)^2+5cosθ.(sinθ)^4]+[cos^4θ.isinθ-10 icons^2θ.(sinθ)^3+isin^5θ]`
Compare real and imaginary parts
`cos5θ=[cos^5θ-10cos^3θ.(sinθ)^2+5cosθ.(sinθ)^4]`
`sin 5θ=+[5cos^4θ.sinθ-10cos^2θ.(sinθ)^3+sin^5θ]`
tan 5θ=`[[5cos^4θ.sinθ-10cos^2θ.(sinθ)^3+sin^5θ]]/[[cos^5θ-10cos^3θ.(sinθ)^2+5cosθ.(sinθ)^4]]`
`tan 5θ=(5tanθ-10tan^3θ+tan^5θ)/(1-10tan^2θ+5tan^4θ)`
`"put" θ=pi/10`
`1-10tan^2 x/10+5tan^4 x/10=0`
APPEARS IN
RELATED QUESTIONS
If y=etan_1x. prove that `(1+x^2)yn+2[2(n+1)x-1]y_n+1+n(n+1)y_n=0`
Find tanhx if 5sinhx-coshx = 5
Separate into real and imaginary parts of cos`"^-1((3i)/4)`
Considering only principal values separate into real and imaginary parts
`i^((log)(i+1))`
Prove that `log((a+ib)/(a-ib))=2itan^(-1) b/a & cos[ilog((a+ib)/(a-ib))=(a^2-b^2)/(a^2+b^2)]`
Find the nth derivative of y=eax cos2 x sin x.