Advertisements
Advertisements
Question
Prove that log `[tan(pi/4+(ix)/2)]=i.tan^-1(sinhx)`
Solution
L.H.S =` log[tan(pi/4+(ix)/2)]`
=`log [(1+tan(ix/2))/(1-tan(ix/2))]`
=`log [1+tan ((ix)/2)]- log [1-tan ((ix)/2)]`
= `log [(1+i.tanh) x/2]-log[(1-itanh )x/2]`
We have ,
`log (a+ib)=1/2log(a^2+b^2)+i tan^-1(b/a)`
∴ = `1/2 log (1+tanh^2 x/2)+i tan^-1 (tanh x/2)-[1/2 log (1+tanh^2 x/2)- i tan^-1(tanh x/2)]`
=`2i[tan^-1 (tanh x/2)]`
`L.H.S= 2 i.tan^-1 (tanh x/2)`
`R.H.S = i.tan ^-1 (sinhx)`
We know that `sinh^-1 x=log(x+sqrt(1+x^2))`
`tanh^-1 x=1/2[log((x+1)/(1-x))]`
= `itan^-1 (tanh x/2)`
Also `sinh^-1 (tanx)=tanh^-1 (x)`
`R.H.S= itan^-1(tanh x/2)`
`log [tan(pi/4+(ix)/2)=i.tan^-1 (sinhx)]`
APPEARS IN
RELATED QUESTIONS
If `Z=x^2 tan-1y /x-y^2 tan -1 x/y del`
Prove that `(del^z z)/(del_ydel_x)=(x^2-y^2)/(x^2+y^2)`
Show that `ilog((x-i)/(x+i))=pi-2tan6-1x`
Prove that `log(secx)=1/2x^2+1/12x^4+.........`
Show that sec h-1(sin θ) =log cot (`theta/2` ).
If y = log `[tan(pi/4+x/2)]`Prove that
I. tan h`y/2 = tan pi/2`
II. cos hy cos x = 1