Advertisements
Advertisements
Question
Considering only principal values separate into real and imaginary parts
`i^((log)(i+1))`
Solution
Let `Z=i^(log(i+1))`
`therefore logZ = log(1+i).logi`
But `log(i+1)=logsqrt2+itan^(-1)1 = logsqrt2+ipi/4`
and `logi=ipi/2`
`therefore log Z=(logsqrt2+ipi/4).ipi/2`
`=[1/2log2+ipi/4pi]/2`
`(-pi^2)/8+ipi/4log2=e^(pi^2/8+itheta)= e^(pi^2/8itheta)`
where `theta=pi/4log2`
`=e^(pi^2/8)[costheta+isintheta]`
∴ Real part of Z `=e^(pi^2/8)costheta=e^(pi^2/8)cos[pi/4log2]`
∴ Imaginary part of Z `=e^(pi^2/8)sin[pi/4log2]`
APPEARS IN
RELATED QUESTIONS
Obtain tan 5𝜽 in terms of tan 𝜽 & show that `1-10tan^2 x/10+5tan^4 x/10=0`
If y=etan_1x. prove that `(1+x^2)yn+2[2(n+1)x-1]y_n+1+n(n+1)y_n=0`
Find tanhx if 5sinhx-coshx = 5
Separate into real and imaginary parts of cos`"^-1((3i)/4)`
Prove that `log((a+ib)/(a-ib))=2itan^(-1) b/a & cos[ilog((a+ib)/(a-ib))=(a^2-b^2)/(a^2+b^2)]`
Find the nth derivative of y=eax cos2 x sin x.