Advertisements
Advertisements
Question
If y=etan_1x. prove that `(1+x^2)yn+2[2(n+1)x-1]y_n+1+n(n+1)y_n=0`
Solution
`y=e^tan-1 x` ...................(1)
Diff w.r.t x,
`y_1=e^tan-1 x 1/(x^2+1)`
`(x^2+1)y_1= e tan^-1 x=y` ..................(from 1)
Again diff. w.r.t x,
`(x^2+1)y_2+2xy_1=y_1` ...............(1)
Now take n th derivative by applying Leibnitz theorem,
Leibnitz theorem is :
`(uv)_n=u_nv+"_1^nCu_n-1v_1+ _2^nCu_(n-2) v_2+....+uv_n`
`u=(x^2+1),v=y^2` ................. for first term in eqn(1)
`u=2x,v=y_1` .............. for second term in eqn (1)
∴ `(1+x^2)y_n+2(n+1)xy_n+1+n(n+1)y_n-y_(n+1)=0`
∴ `(1+x^2)y_(n+2)+[2(n+1)x-1]y_(n+1)+n(n+1)y_n=0`
Hence Proved.
APPEARS IN
RELATED QUESTIONS
Obtain tan 5𝜽 in terms of tan 𝜽 & show that `1-10tan^2 x/10+5tan^4 x/10=0`
Find tanhx if 5sinhx-coshx = 5
Separate into real and imaginary parts of cos`"^-1((3i)/4)`
Considering only principal values separate into real and imaginary parts
`i^((log)(i+1))`
Prove that `log((a+ib)/(a-ib))=2itan^(-1) b/a & cos[ilog((a+ib)/(a-ib))=(a^2-b^2)/(a^2+b^2)]`
Find the nth derivative of y=eax cos2 x sin x.