Advertisements
Advertisements
Question
Express `(2x^3+3x^2-8x+7)` in terms of (x-2) using taylor'r series.
Sum
Solution
Let `f(x)=2x^3+3x^2-8x+7`
Here a=2
`f(x)=2x^3+3x^2-8x+7` `f(2)=19`
`f'(x)=6x^2+6x-8` ` f'(2)=28`
`f'(x)=12x+6` ` f''(2)=30`
`f'''(x)=f'''(2)=12`
Taylor’s series is :
`f(x)=f(x)=f(a)+(x-a)f'(a)+(x-a)^2/(2!) f''(a)+........`
`2x^3+3x^2-8x+7=19+(x-2)28+(x-2)^2/(2!) 30+(x-a)^3/(3!) 12`
`2x^3+3x^2-8x+7=19+28(x-2)+15(x-2)^2+2(x-2)^3`
shaalaa.com
Taylor’S Theorem (Statement Only)
Is there an error in this question or solution?