Advertisements
Advertisements
Question
Separate into real and imaginary parts of cos`"^-1((3i)/4)`
Solution
Let a+ib= cos`"^-1((3i)/4)` .................(1)
∴` cos(a+ib)=(3i)/4`
∴` cos (a) cos(ib)-sin (a) sin(ib)=(3i)/4`
cos(a)cosh(b) – isin(a)sinh(b) =`0+(3i)/4` `{∵ cos (ix)=cosh(ix)=sinh(x)}`
Comparing Real and Imaginary terms on both sides,
`cos(a)cosh(b)=0` ...............(2) ` & -sin(a)sinj(b)=3/4`......(3)
From (2), cos(a)=0 or cosh(b)=0,
∴` a=pi/2` ....................(4)
`"From" (3) & (4), -sin(pi/2)sin(b)=3/4`
∴ `1.sinh(b)=(-3)/4`
∴ b= sinh`"^1((-3)/4)`
= `log[((-3)/4)+sqrt(((-3)/4)^2+1)]` `{∵ sinh"^-1z=log (z+sqrt(z^2+1))}`
= `Log [((-3)/4)+sqrt(9/16+1)]`
= `log[((-3)/4)+5/4]`
=`log 1/2`
=` log2^-1`
∴ `b=-log2` ........(5)
Substituting (4) & (5) in (1), `cos^-1((3i)/4)=pi/2-i log2`
Comparing Real and Imaginary terms on both sides,
Real part`=a= pi/2`
Imaginary part`=b=-log2`
APPEARS IN
RELATED QUESTIONS
Obtain tan 5𝜽 in terms of tan 𝜽 & show that `1-10tan^2 x/10+5tan^4 x/10=0`
If y=etan_1x. prove that `(1+x^2)yn+2[2(n+1)x-1]y_n+1+n(n+1)y_n=0`
Find tanhx if 5sinhx-coshx = 5
Considering only principal values separate into real and imaginary parts
`i^((log)(i+1))`
Prove that `log((a+ib)/(a-ib))=2itan^(-1) b/a & cos[ilog((a+ib)/(a-ib))=(a^2-b^2)/(a^2+b^2)]`
Find the nth derivative of y=eax cos2 x sin x.