Advertisements
Advertisements
Question
Find the nth derivative of y=eax cos2 x sin x.
Solution
Given `y = e^(ax) cos^2xsin x`
`y = e^(ax)((1+cos2x)/2)sinx`
`y=1/2(e^(ax)sinx+e^(ax)cos2xsinx)`
`y =1/2(e^(ax)sinx+1/2e^(ax)(sin3x-sinx))`
`y=1/2(1/2e^(ax)sin3x+1/2e^(ax)sinx)`
Diff n times,
`y_n=1/2(1/2 e^(ax)(sqrt(a^2+9))^nsin(3x+ntan^(-1) 3/a)+1/2e^(ax)(sqrt(a^2+1))^n sin(x+n tan^(-1) 1/a)).`
APPEARS IN
RELATED QUESTIONS
Obtain tan 5𝜽 in terms of tan 𝜽 & show that `1-10tan^2 x/10+5tan^4 x/10=0`
If y=etan_1x. prove that `(1+x^2)yn+2[2(n+1)x-1]y_n+1+n(n+1)y_n=0`
Find tanhx if 5sinhx-coshx = 5
Separate into real and imaginary parts of cos`"^-1((3i)/4)`
Considering only principal values separate into real and imaginary parts
`i^((log)(i+1))`
Prove that `log((a+ib)/(a-ib))=2itan^(-1) b/a & cos[ilog((a+ib)/(a-ib))=(a^2-b^2)/(a^2+b^2)]`