Advertisements
Advertisements
प्रश्न
On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is transitive
उत्तर
Given N = set of natural numbers
R is the relation defined by a R b if 2a + 3b = 30
3b = 30 – 2a ⇒ b = `(30 - 2a)/3` a, b ∈ N
a = 1, b = `(30 - 2)/3 = 28/3 ∉ "N"`
a = 2, b = `(30 - 4)/3 = 26/3 ∉ "N"`
a = 3, b = `(30 - 6)/3 = 24/3` = 8 ∈ N
∴ (3, 8) ∈ R
a = 4, b = `(30 - 8)/3 = 22/3 ∉ "N"`
a = 5, b = `(30 - 10)/3 = 20/3 ∉ "N"`
a = 6, b = `(30 - 12)/3 = 18/3` = 6 ∈ N
∴ (6, 6) ∈ R
a = 7, b = `(30 - 14)/3 = 16/3 ∉ "N"`
a = 8, b = `(30 - 16)/3 = 14/3 ∉ "N"`
a = 9, b = `(30 - 18)/3 = 12/3` = 4 ∈ N
∴ (9, 4) ∈ R
a = 10, b = `(30 - 20)/3 = 10/3 ∉ "N"`
a = 11, b = `(30 - 22)/3 = 8/3 ∉ "N"`
a = 12, b = `(30 - 24)/3 = 6/3` = 2 ∈ N
∴ (12, 2) ∈ R
a = 13, b = `(30 - 26)/3 = 4/3 ∉ "N"`
a = 14, b = `(30 - 28)/3 = 2/3 ∉ "N"`
a = 15, b = `(30 - 30)/3 = 0/3` = 0 ∈ N
When a > 15, b negative and does not belong to N.
∴ R = {(3, 8), (6, 6), (9, 4), (12, 2)}.
Clearly R is transitive since we cannot find elements (a, b), (b, c) in R such that (a, c) ∉ R
APPEARS IN
संबंधित प्रश्न
A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.
Let A = (3, 5) and B = (7, 11). Let R = {(a, b) : a ∈ A, b ∈ B, a − b is odd}. Show that R is an empty relation from A into B.
Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?
(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R
Justify your answer in case.
Let R be a relation on N × N defined by
(a, b) R (c, d) ⇔ a + d = b + c for all (a, b), (c, d) ∈ N × N
Show that:
(i) (a, b) R (a, b) for all (a, b) ∈ N × N
If A = [1, 3, 5] and B = [2, 4], list of elements of R, if
R = {(x, y) : x, y ∈ A × B and x > y}
Let A = [1, 2, 3, 5], B = [4, 6, 9] and R be a relation from A to B defined by R = {(x, y) : x − yis odd}. Write R in roster form.
Write the relation in the Roster Form. State its domain and range
R3 = {(x, y)/y = 3x, y∈ {3, 6, 9, 12}, x∈ {1, 2, 3}
Write the relation in the Roster Form. State its domain and range
R8 = {(a, b)/b = a + 2, a ∈ z, 0 < a < 5}
Answer the following:
Determine the domain and range of the following relation.
R = {(a, b)/b = |a – 1|, a ∈ Z, IaI < 3}
Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?
R1 = {(2, 1), (7, 1)}
Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible
{(x, y) | y = x + 3, x, y are natural numbers < 10}
Discuss the following relation for reflexivity, symmetricity and transitivity:
On the set of natural numbers the relation R defined by “xRy if x + 2y = 1”
Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence
Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric
Prove that the relation “friendship” is not an equivalence relation on the set of all people in Chennai
Let A = {a, b, c}. What is the equivalence relation of smallest cardinality on A? What is the equivalence relation of largest cardinality on A?
Choose the correct alternative:
Let f : R → R be defined by f(x) = 1 − |x|. Then the range of f is
If R3 = {(x, x) | x is a real number} is a relation. Then find domain and range of R3.
Is the given relation a function? Give reasons for your answer.
s = {(n, n2) | n is a positive integer}
If R = {(x, y): x, y ∈ Z, x2 + 3y2 ≤ 8} is a relation on the set of integers Z, then the domain of R–1 is ______.