हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is transitive - Mathematics

Advertisements
Advertisements

प्रश्न

On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is transitive

योग

उत्तर

Given N = set of natural numbers

R is the relation defined by a R b if 2a + 3b = 30

3b = 30 – 2a ⇒ b = `(30 - 2a)/3` a, b ∈ N

a = 1, b = `(30 - 2)/3 = 28/3 ∉ "N"`

a = 2, b = `(30 - 4)/3 = 26/3 ∉ "N"`

a = 3, b = `(30 - 6)/3 = 24/3` = 8 ∈ N

∴ (3, 8) ∈ R

a = 4, b = `(30 - 8)/3 = 22/3 ∉ "N"`

a = 5, b = `(30 - 10)/3 = 20/3 ∉ "N"`

a = 6, b = `(30 - 12)/3 = 18/3` = 6 ∈ N

∴ (6, 6) ∈ R

a = 7, b = `(30 - 14)/3 = 16/3 ∉ "N"`

a = 8, b = `(30 - 16)/3 = 14/3 ∉ "N"`

a = 9, b = `(30 - 18)/3 = 12/3` = 4 ∈ N

∴ (9, 4) ∈ R

a = 10, b = `(30 - 20)/3 = 10/3 ∉ "N"`

a = 11, b = `(30 - 22)/3 = 8/3 ∉ "N"`

a = 12, b = `(30 - 24)/3 = 6/3` = 2 ∈ N

∴ (12, 2) ∈ R

a = 13, b = `(30 - 26)/3 = 4/3 ∉ "N"`

a = 14, b = `(30 - 28)/3 = 2/3 ∉ "N"`

a = 15, b = `(30 - 30)/3 = 0/3` = 0 ∈ N

When a > 15, b negative and does not belong to N.

∴ R = {(3, 8), (6, 6), (9, 4), (12, 2)}.

Clearly R is transitive since we cannot find elements (a, b), (b, c) in R such that (a, c) ∉ R

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Sets, Relations and Functions - Exercise 1.2 [पृष्ठ १८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 1 Sets, Relations and Functions
Exercise 1.2 | Q 5. (iii) | पृष्ठ १८

संबंधित प्रश्न

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.


Let A = (3, 5) and B = (7, 11). Let R = {(ab) : a ∈ A, b ∈ B, a − b is odd}. Show that R is an empty relation from A into B.


Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?

(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R

Justify your answer in case.


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:
(i) (ab) R (ab) for all (ab) ∈ N × N


If A = [1, 3, 5] and B = [2, 4], list of elements of R, if
R = {(xy) : xy ∈ A × B and x > y}


Let A = [1, 2, 3, 5], B = [4, 6, 9] and R be a relation from A to B defined by R = {(xy) : x − yis odd}. Write R in roster form. 


Write the relation in the Roster Form. State its domain and range

R3 = {(x, y)/y = 3x, y∈ {3, 6, 9, 12}, x∈ {1, 2, 3}


Write the relation in the Roster Form. State its domain and range

R8 = {(a, b)/b = a + 2, a ∈ z, 0 < a < 5}


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/b = |a – 1|, a ∈ Z, IaI < 3}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R1 = {(2, 1), (7, 1)}


Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible

{(x, y) | y = x + 3, x, y are natural numbers < 10}


Discuss the following relation for reflexivity, symmetricity and transitivity:

On the set of natural numbers the relation R defined by “xRy if x + 2y = 1”


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric


Prove that the relation “friendship” is not an equivalence relation on the set of all people in Chennai


Let A = {a, b, c}. What is the equivalence relation of smallest cardinality on A? What is the equivalence relation of largest cardinality on A?


Choose the correct alternative:

Let f : R → R be defined by f(x) = 1 − |x|. Then the range of f is


If R3 = {(x, x) | x is a real number} is a relation. Then find domain and range of R3.


Is the given relation a function? Give reasons for your answer.

s = {(n, n2) | n is a positive integer}


If R = {(x, y): x, y ∈ Z, x2 + 3y2 ≤ 8} is a relation on the set of integers Z, then the domain of R–1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×