हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Prove by vector method that sin(α + ß) = sin α cos ß + cos α sin ß - Mathematics

Advertisements
Advertisements

प्रश्न

Prove by vector method that sin(α + ß) = sin α cos ß + cos α sin ß

आकृति
योग

उत्तर

Let `bar"a" = bar"OA", bar"b" = bar"OB"` be the unit vectors making angles α and ß respectively with positive x-axis where A and B are as shown in the diagram


Draw AL and BM perpendicular to the X-axis, then

`"OL" = bar"OA"` = cos α

`|bar"OL"| = |bar"OA"|` cos α = cos α

`|bar"LA"| = |bar"OA"|` sin α = sin α

`|bar"OL"| = |bar"OL"|  hat"j" = cos alpha  hat"i"`

`bar"LA" = sin alpha(-  hat"j")`

`bar"a" = bar"OA" = bar"OL" + bar"LA"`

= `cos  alpha  hat"i" + sin  alpha  hat"j"`  ........(1)

Similarly `bar"b" = cos  beta  hat"i" - sin  beta  hat"j"` .......(2)

The angle between `bar"a"` and `bar"b"` is α + ß and the vectors `bar"b", bar"a", bar"k"` from a right handed system.

`bar"b" xx bar"a" = |bar"b"||bar"a"| sin(alpha + beta)hat"k"`

= `sin(alpha + beta)hat"k"`  ........(1)

`bar"b" xx bar"a" = |(hat"i", bar"j", bar"k"),(cos  beta, - sin  beta, 0),(cos  alpha, sin alpha, 0)|`

= `(sin alpha cos beta + cos alpha sin beta)hat"k"`  .......(2)

From (1) and (2)

sin(α + ß) = sin α cos ß + cos α sin ß

shaalaa.com
Scalar Product and Vector Product
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Applications of Vector Algebra - Exercise 6.1 [पृष्ठ २३१]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 6 Applications of Vector Algebra
Exercise 6.1 | Q 10 | पृष्ठ २३१

संबंधित प्रश्न

Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of a chord, then the line is perpendicular to the chord


Prove by vector method that the median to the base of an isosceles triangle is perpendicular to the base


Prove by vector method that an angle in a semi-circle is a right angle


Using vector method, prove that cos(α – β) = cos α cos β + sin α sin β


A particle acted on by constant forces `8hat"i" + 2hat"j" - 6hat"k"` and `6hat"i" + 2hat"j" - 2hat"k"` is displaced from the point (1, 2, 3) to the point (5, 4, 1). Find the total work done by the forces


Find the magnitude and direction cosines of the torque of a force represented by `3hat"i" + 4hat"j" - 5hat"k"` about the point with position vector `2hat"i" - 3hat"j" + 4hat"k"`  acting through a point whose position vector is `4hat"i" + 2hat"j" - 3hat"k"`


Find the torque of the resultant of the three forces represented by `- 3hat"i" + 6hat"j" - 3hat"k", 4hat"i" - 10hat"j" + 12hat"k"` and `4hat"i" + 7hat"j"` acting at the point with position vector `8hat"i" - 6hat"j" - 4hat"k"` about the point with position vector `18hat"i" + 3hat"j" - 9hat"k"`


Let `veca = αhati + 3hatj - hatk, vecb = 3hati - βhatj + 4hatk` and `vecc = hati + 2hatj - 2hatk` where α, β ∈ R, be three vectors. If the projection of a `veca` on `vecc` is `10/3` and `vecb xx vecc = -6hati + 10hatj + 7hatk`, then the value of α + β is equal to ______.


Let A, B, C be three points whose position vectors respectively are 

`vec"a" = hat"i" + 4hat"j" + 3hat"k"`

`vec"b" = 2hat"i" + αhat"j" + 4hat"k", α ∈ "R"`

`vec"c" = 3hat"i" - 2hat"j" + 5hat"k"`

If α is the smallest positive integer for which `vec"a", vec"b", vec"c"` are noncollinear, then the length of the median, in ΔABC, through A is ______.


Let `veca = 2hati + hatj - 2hatk` and `vecb = hati + hatj`. If `vecc` is a vector such that `veca.vecc = |vecc|, |vecc - veca| = 2sqrt(2)`, angle between `(veca xx vecb)` and `vecc` is `π/6`, then the value of `|(veca xx vecb) xx vecc|` is ______.


Let `veca, vecb, vecc` be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ, with the vector `veca + vecb + vecc`. Then, 36 cos22θ is equal to ______.


Let `veca, vecb` and `vecc` be three unit vectors such that `|veca - vecb|^2 + |veca - vecc|^2` = 8. Then find the value of `|veca + 2vecb|^2 + |veca + 2vecc|^2`


The vector `vecp` perpendicular to the vectors `veca = 2hati + 3hatj - hatk` and `vecb = hati - 2hatj + 3hatk` and satisfying the condition `vecp.(2hati - hatj + hatk)` = –6 is ______.


If `vecx` and `vecy` be two non-zero vectors such that `|vecx + vecy| = |vecx|` and `2vecx + λvecy` is perpendicular to `vecy`, then the value of λ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×