рд╣рд┐рдВрджреА

Prove that the Following Matrix is Orthogonal and Hence Find ЁЭСитИТЁЭЯП. a = 1 3 тОб тОв тОг тИТ 2 1 2 2 2 1 1 тИТ 2 2 тОд тОе тОж - Applied Mathematics 1

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Prove that the following matrix is orthogonal & hence find ЁЭСи−ЁЭЯП.

A`=1/3[(-2,1,2),(2,2,1),(1,-2,2)]`

рдпреЛрдЧ

рдЙрддреНрддрд░

Let A`=1/3[(-2,1,2),(2,2,1),(1,-2,2)]`

Transpose of A is given by ,

`A^T=1/3[(-2,2,1),(1,2,-2),(2,1,2)]`

`A.A^T=1/3[(-2,1,2),(2,2,1),(1,-2,2)][(-2,2,1),(1,2,-2),(2,1,2)]`

`=1/9[(1,0,0),(0,1,0),(0,0,1)]`

`=1/9`

The given matrix A is orthogonal.
The inverse of an orthogonal matrix is always equal to the
Transpose of that particular matrix.

`therefore A^-1=1/3[(-2,2,1),(1,2,-2),(2,1,2)]`

shaalaa.com
Transpose of a Matrix
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
2017-2018 (June) CBCGS
Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Course
Use app×