Advertisements
Advertisements
рдкреНрд░рд╢реНрди
Prove that the following matrix is orthogonal & hence find ЁЭСи−ЁЭЯП.
A`=1/3[(-2,1,2),(2,2,1),(1,-2,2)]`
рдмреЗрд░реАрдЬ
рдЙрддреНрддрд░
Let A`=1/3[(-2,1,2),(2,2,1),(1,-2,2)]`
Transpose of A is given by ,
`A^T=1/3[(-2,2,1),(1,2,-2),(2,1,2)]`
`A.A^T=1/3[(-2,1,2),(2,2,1),(1,-2,2)][(-2,2,1),(1,2,-2),(2,1,2)]`
`=1/9[(1,0,0),(0,1,0),(0,0,1)]`
`=1/9`
The given matrix A is orthogonal.
The inverse of an orthogonal matrix is always equal to the
Transpose of that particular matrix.
`therefore A^-1=1/3[(-2,2,1),(1,2,-2),(2,1,2)]`
shaalaa.com
Transpose of a Matrix
рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?