हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा ११

Prove that the term independent of x in the expansion of (x+1x)2n is 1⋅3⋅5...(2n-1)2nn!. - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that the term independent of x in the expansion of `(x + 1/x)^(2n)` is `(1*3*5...(2n - 1)2^n)/(n!)`.

योग

उत्तर

There are (2n + 1) terms in the expansion.

∴ tn+1 is the middle term.

`"t"_(n+1) = 2_n"C"_n (x)^(2n - n) (1/x)^n`

`"t"_(n+1) = 2_n"C"_n x^n 1/x^n = 2n"C"_n (|__2n)/(|__n|__n)`

`= ((2n)(2n - 1)(2n - 2)...4*3*2*1)/(n(n-1)... 2 *1 |__n)`

`= ((2n - 1)(2n - 3)...3*1n(n - 1)(n - 2)...3*2*1 2^n)/(n(n-1)(n-2)...3*2*1|__n)`

`= ((2n - 1)...3*1)/(|__n) 2^n`

`= (1*3*5...(2n - 1))/(|__n)2^n`

shaalaa.com
Binomial Theorem
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Algebra - Exercise 2.6 [पृष्ठ ४५]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
अध्याय 2 Algebra
Exercise 2.6 | Q 6 | पृष्ठ ४५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×