Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
The remainder when 3815 is divided by 13 is
विकल्प
12
1
11
5
उत्तर
12
APPEARS IN
संबंधित प्रश्न
Evaluate the following using binomial theorem:
(101)4
Evaluate the following using binomial theorem:
(999)5
Find the 5th term in the expansion of (x – 2y)13.
Find the middle terms in the expansion of
`(x + 1/x)^11`
Find the middle terms in the expansion of
`(3x + x^2/2)^8`
Find the middle terms in the expansion of
`(2x^2 - 3/x^3)^10`
Find the term independent of x in the expansion of
`(x - 2/x^2)^15`
Prove that the term independent of x in the expansion of `(x + 1/x)^(2n)` is `(1*3*5...(2n - 1)2^n)/(n!)`.
The constant term in the expansion of `(x + 2/x)^6` is
Expand `(2x^2 - 3/x)^3`
Compute 97
Find the last two digits of the number 3600
If n is a positive integer, using Binomial theorem, show that, 9n+1 − 8n − 9 is always divisible by 64
If n is a positive integer and r is a non-negative integer, prove that the coefficients of xr and xn−r in the expansion of (1 + x)n are equal
If the binomial coefficients of three consecutive terms in the expansion of (a + x)n are in the ratio 1 : 7 : 42, then find n
In the binomial expansion of (1 + x)n, the coefficients of the 5th, 6th and 7th terms are in AP. Find all values of n
Prove that `"C"_0^2 + "C"_1^2 + "C"_2^2 + ... + "C"_"n"^2 = (2"n"!)/("n"!)^2`
Choose the correct alternative:
The value of 2 + 4 + 6 + … + 2n is