हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Compute 97 - Mathematics

Advertisements
Advertisements

प्रश्न

Compute 97 

योग

उत्तर

97 = (10 – 1)

= 7C0 (10)7 (– 1)0 + 7C1 (10)7–1 (– 1)1 + 7C2 (10)7–2 (– 1)2 + 7C3 (10)7–3 (– 1)3 + 7C4 (10)7–4 (– 1)4 + 7C5 (10)7–5 (– 1)5 + 7C6 (10)7–6 (– 1)6 + 7C7 (10)7–7 (– 1)7

= `1 xx 10^7 xx 1 + 7 xx 10^6 xx - 1 + (7 xx 6)/(1 xx 2) xx 10^5 xx 1 + (7 xx 6 xx 5)/(1 xx 2 xx 3) xx 10^4 xx - 1 + ""^7"C"_3 xx 10^3 xx 1 + ""^7"C"_2 xx 10^2 xx -1 + ""^7"C"_1 xx 10^1 xx 1 + ""^7"C"_7 xx - 1`

= `10^7 - 7 xx 10^6 + 21 xx 10^5 - 35 xx 10^4 + (7 xx 6 xx 5)/(1 xx 2 xx 3) xx 10^3 - (7 xx 6)/(1 xx 2) xx 10^2 + 7 xx 10 - 1`

= 103(104 – 7 × 103 + 21 × 102 – 35 × 10 + 35) – 21 × 100 + 70 – 1

= 103(10000 – 7000 + 2100 – 350 + 35 ) – 2100 + 70 – 1

= 103(12135 – 7350) – 2031

= 103 × 4785 – 2031

= 4785000 – 2031

= 4782969

shaalaa.com
Binomial Theorem
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Binomial Theorem, Sequences and Series - Exercise 5.1 [पृष्ठ २१०]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 5 Binomial Theorem, Sequences and Series
Exercise 5.1 | Q 2. (iii) | पृष्ठ २१०

संबंधित प्रश्न

Evaluate the following using binomial theorem:

(101)4


Evaluate the following using binomial theorem:

(999)5


Expand the following by using binomial theorem.

`(x + 1/y)^7`


Find the term independent of x in the expansion of

`(x - 2/x^2)^15`


Find the term independent of x in the expansion of

`(2x^2 + 1/x)^12`


Find the Co-efficient of x11 in the expansion of `(x + 2/x^2)^17`


The middle term in the expansion of `(x + 1/x)^10` is


The last term in the expansion of (3 + √2 )8 is:


Sum of binomial coefficient in a particular expansion is 256, then number of terms in the expansion is:


Using binomial theorem, indicate which of the following two number is larger: `(1.01)^(1000000)`, 10


Find the coefficient of x2 and the coefficient of x6 in `(x^2 -1/x^3)^6` 


Find the constant term of `(2x^3 - 1/(3x^2))^5`


If n is a positive integer, using Binomial theorem, show that, 9n+1 − 8n − 9 is always divisible by 64


If n is an odd positive integer, prove that the coefficients of the middle terms in the expansion of (x + y)n are equal


If a and b are distinct integers, prove that a − b is a factor of an − bn, whenever n is a positive integer. [Hint: write an = (a − b + b)n and expaand]


In the binomial expansion of (a + b)n, if the coefficients of the 4th and 13th terms are equal then, find n


Prove that `"C"_0^2 + "C"_1^2 + "C"_2^2 + ... + "C"_"n"^2 = (2"n"!)/("n"!)^2`


Choose the correct alternative:
The value of 2 + 4 + 6 + … + 2n is


Choose the correct alternative:
The remainder when 3815 is divided by 13 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×