Advertisements
Advertisements
प्रश्न
Compute 97
उत्तर
97 = (10 – 1)7
= 7C0 (10)7 (– 1)0 + 7C1 (10)7–1 (– 1)1 + 7C2 (10)7–2 (– 1)2 + 7C3 (10)7–3 (– 1)3 + 7C4 (10)7–4 (– 1)4 + 7C5 (10)7–5 (– 1)5 + 7C6 (10)7–6 (– 1)6 + 7C7 (10)7–7 (– 1)7
= `1 xx 10^7 xx 1 + 7 xx 10^6 xx - 1 + (7 xx 6)/(1 xx 2) xx 10^5 xx 1 + (7 xx 6 xx 5)/(1 xx 2 xx 3) xx 10^4 xx - 1 + ""^7"C"_3 xx 10^3 xx 1 + ""^7"C"_2 xx 10^2 xx -1 + ""^7"C"_1 xx 10^1 xx 1 + ""^7"C"_7 xx - 1`
= `10^7 - 7 xx 10^6 + 21 xx 10^5 - 35 xx 10^4 + (7 xx 6 xx 5)/(1 xx 2 xx 3) xx 10^3 - (7 xx 6)/(1 xx 2) xx 10^2 + 7 xx 10 - 1`
= 103(104 – 7 × 103 + 21 × 102 – 35 × 10 + 35) – 21 × 100 + 70 – 1
= 103(10000 – 7000 + 2100 – 350 + 35 ) – 2100 + 70 – 1
= 103(12135 – 7350) – 2031
= 103 × 4785 – 2031
= 4785000 – 2031
= 4782969
APPEARS IN
संबंधित प्रश्न
Evaluate the following using binomial theorem:
(101)4
Evaluate the following using binomial theorem:
(999)5
Expand the following by using binomial theorem.
`(x + 1/y)^7`
Find the term independent of x in the expansion of
`(x - 2/x^2)^15`
Find the term independent of x in the expansion of
`(2x^2 + 1/x)^12`
Find the Co-efficient of x11 in the expansion of `(x + 2/x^2)^17`
The middle term in the expansion of `(x + 1/x)^10` is
The last term in the expansion of (3 + √2 )8 is:
Sum of binomial coefficient in a particular expansion is 256, then number of terms in the expansion is:
Using binomial theorem, indicate which of the following two number is larger: `(1.01)^(1000000)`, 10
Find the coefficient of x2 and the coefficient of x6 in `(x^2 -1/x^3)^6`
Find the constant term of `(2x^3 - 1/(3x^2))^5`
If n is a positive integer, using Binomial theorem, show that, 9n+1 − 8n − 9 is always divisible by 64
If n is an odd positive integer, prove that the coefficients of the middle terms in the expansion of (x + y)n are equal
If a and b are distinct integers, prove that a − b is a factor of an − bn, whenever n is a positive integer. [Hint: write an = (a − b + b)n and expaand]
In the binomial expansion of (a + b)n, if the coefficients of the 4th and 13th terms are equal then, find n
Prove that `"C"_0^2 + "C"_1^2 + "C"_2^2 + ... + "C"_"n"^2 = (2"n"!)/("n"!)^2`
Choose the correct alternative:
The value of 2 + 4 + 6 + … + 2n is
Choose the correct alternative:
The remainder when 3815 is divided by 13 is