हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Prove that CCCCnnnC02+C12+C22+...+Cn2=2n!(n!)2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `"C"_0^2 + "C"_1^2 + "C"_2^2 + ... + "C"_"n"^2 = (2"n"!)/("n"!)^2`

योग

उत्तर

We know `"C"_0 + "C"_1 + "C"_2 + ... + "C"_"n"` = 2n

And `"C"_0"C"_"r" + ""_1"C"_("r" + 1) + "C"_2"C"_("r" + 2) + ......... + "C"_("n" - "r")"C"_"n" = ""^(2"n")"C"_("n - r")`

Taking r = 0 we get

`"C"_0"C"_0 + "C"1"C"_1 + "C"_2"C"2 + ......... + "C"_"n""C"-"n" = ""^(2"n")"C"_"n"`

(i.e.) `"C"_0^2 + "C"_1^2 + "C"_2^2 + ......... + "C"_"n"^2`

= `""^(2"n")"C"_"n"`

= `(2"n"!)/("n"!(2"n" - "n")!)`

= `(2"n"!)/("n"!"n"!)`

= `(2"n"!)/("n"!)^2`

shaalaa.com
Binomial Theorem
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Binomial Theorem, Sequences and Series - Exercise 5.1 [पृष्ठ २१०]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 5 Binomial Theorem, Sequences and Series
Exercise 5.1 | Q 16 | पृष्ठ २१०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×