Advertisements
Advertisements
Question
Prove that `"C"_0^2 + "C"_1^2 + "C"_2^2 + ... + "C"_"n"^2 = (2"n"!)/("n"!)^2`
Solution
We know `"C"_0 + "C"_1 + "C"_2 + ... + "C"_"n"` = 2n
And `"C"_0"C"_"r" + ""_1"C"_("r" + 1) + "C"_2"C"_("r" + 2) + ......... + "C"_("n" - "r")"C"_"n" = ""^(2"n")"C"_("n - r")`
Taking r = 0 we get
`"C"_0"C"_0 + "C"1"C"_1 + "C"_2"C"2 + ......... + "C"_"n""C"-"n" = ""^(2"n")"C"_"n"`
(i.e.) `"C"_0^2 + "C"_1^2 + "C"_2^2 + ......... + "C"_"n"^2`
= `""^(2"n")"C"_"n"`
= `(2"n"!)/("n"!(2"n" - "n")!)`
= `(2"n"!)/("n"!"n"!)`
= `(2"n"!)/("n"!)^2`
APPEARS IN
RELATED QUESTIONS
Evaluate the following using binomial theorem:
(999)5
Expand the following by using binomial theorem.
(2a – 3b)4
Expand the following by using binomial theorem.
`(x + 1/y)^7`
Find the 5th term in the expansion of (x – 2y)13.
Find the middle terms in the expansion of
`(3x + x^2/2)^8`
Find the middle terms in the expansion of
`(2x^2 - 3/x^3)^10`
Find the term independent of x in the expansion of
`(x - 2/x^2)^15`
Find the Co-efficient of x11 in the expansion of `(x + 2/x^2)^17`
The last term in the expansion of (3 + √2 )8 is:
Sum of the binomial coefficients is
Expand `(2x^2 -3sqrt(1 - x^2))^4 + (2x^2 + 3sqrt(1 - x^2))^4`
Compute 994
Compute 97
Find the coefficient of x15 in `(x^2 + 1/x^3)^10`
Find the coefficient of x4 in the expansion `(1 + x^3)^50 (x^2 + 1/x)^5`
If n is a positive integer, using Binomial theorem, show that, 9n+1 − 8n − 9 is always divisible by 64
In the binomial expansion of (1 + x)n, the coefficients of the 5th, 6th and 7th terms are in AP. Find all values of n
Choose the correct alternative:
The remainder when 3815 is divided by 13 is