Advertisements
Advertisements
Question
Find the 5th term in the expansion of (x – 2y)13.
Solution
General term is tr+1 = nCr xn-r ar
(x – 2y)13 = (x + (-2y))13
Here x is x, a is (-2y) and n = 13
5th term = t5 = t4+1 = 13C4 x13-4 (-2y)4
= 13C4 x9 24 y4
`= (13xx12xx11xx10)/(4xx3xx2xx1)`× 2 × 2 × 2 × 2× x9y4
= 13 × 11 × 10 × 8x9y4
= 13 × 880x9y4
= 11440x9y4
APPEARS IN
RELATED QUESTIONS
Find the middle terms in the expansion of
`(2x^2 - 3/x^3)^10`
Find the term independent of x in the expansion of
`(x^2 - 2/(3x))^9`
Show that the middle term in the expansion of is (1 + x)2n is `(1*3*5...(2n - 1)2^nx^n)/(n!)`
The middle term in the expansion of `(x + 1/x)^10` is
Sum of the binomial coefficients is
Compute 1024
Find the coefficient of x15 in `(x^2 + 1/x^3)^10`
Find the coefficient of x2 and the coefficient of x6 in `(x^2 -1/x^3)^6`
If a and b are distinct integers, prove that a − b is a factor of an − bn, whenever n is a positive integer. [Hint: write an = (a − b + b)n and expaand]
In the binomial expansion of (a + b)n, if the coefficients of the 4th and 13th terms are equal then, find n