Advertisements
Advertisements
Question
Show that the middle term in the expansion of is (1 + x)2n is `(1*3*5...(2n - 1)2^nx^n)/(n!)`
Solution
There are 2n + 1 terms in expansion of (1 + x)2n.
∴ The middle term is tn+1.
`"t"_(n+1) = 2n"C"_"n" (1)^(2n - n) x^n = 2n"C"_nx^n = (|__2n)/(|__n |__n) x^n`
`= ((2n)(2n - 1)(2n - 2)(2n - 3)...5*4*3*2*1)/(|__n|__n) x^n`
`= (((2n - 1)(2n - 3)...3*1)2n(2n - 2)...4*2)/(|__n|__n)`
`= ((2n - 1)(2n - 3) ...1 2^n n(n - 1)1...3*2*1)/(|__n|__n)`
`= ((2n - 1)(2n - 3)...3*1)/(|__n) 2^n x^n`
`= (1 * 3 * 5 * 7...(2n - 1)2^n*x^n)/(|__n)`
APPEARS IN
RELATED QUESTIONS
Expand the following by using binomial theorem.
`(x + 1/y)^7`
The last term in the expansion of (3 + √2 )8 is:
Sum of the binomial coefficients is
Expand `(2x^2 -3sqrt(1 - x^2))^4 + (2x^2 + 3sqrt(1 - x^2))^4`
Compute 97
Find the coefficient of x4 in the expansion `(1 + x^3)^50 (x^2 + 1/x)^5`
If n is a positive integer and r is a non-negative integer, prove that the coefficients of xr and xn−r in the expansion of (1 + x)n are equal
If the binomial coefficients of three consecutive terms in the expansion of (a + x)n are in the ratio 1 : 7 : 42, then find n
In the binomial expansion of (1 + x)n, the coefficients of the 5th, 6th and 7th terms are in AP. Find all values of n
Choose the correct alternative:
The remainder when 3815 is divided by 13 is