Advertisements
Advertisements
प्रश्न
Prove the following:
cos 12°+ cos 84° + cos 156° + cos 132° = `-1/2`
उत्तर
L.H.S. = cos 12°+ cos 84° + cos 156° + cos 132°
= cos12°+ cos84° + cos(180° – 24°) + cos(180° – 48°)
= cos 12° + cos 84° – cos 24° – cos 48° ...[∵ cos(π – θ) = – cos θ]
= (cos 12° – cos 48°) – (cos 24° – cos 84°)
= `2sin((12^circ + 48^circ)/2)*sin((48^circ - 12^circ)/2) - 2sin((24^circ + 84^circ)/2)*sin((84^circ - 24^circ)/2)`
= 2 sin 30° · sin 18° – 2 sin 54° · sin 30°
= sin 18° – sin 54° ....`[because sin30^circ = 1/2]` ...(1)
Let θ = 18°
Then 2θ = 36° and 3θ = 54°
We have 36° + 54° = 90°
i.e., 2θ = 90° – 3θ
∴ sin 2θ = sin (90° – 3θ) = cos 3θ
∴ 2 sin θ cos θ = 4 cos3θ – 3 cos θ
∴ 2 sin θ = 4 cos2θ – 3
∴ 2 sin θ = 4(1 – sin2θ) – 3
∴ 2 sin θ = 4 – 4 sin2θ – 3
∴ 4 sin2θ + 2 sin θ – 1 = 0
∴ sin θ= `(-2 ± sqrt(4 - 4(4)(-1)))/(2 xx 4)`
= `(-2 ± 2sqrt(5))/8`
= `(-1 ± sqrt(5))/4`
Since θ = 18° is acute, sin θ is positive.
∴ sin θ = sin 18° = `(sqrt(5) - 1)/4` ...(2)
Now, sin 3θ = 3 sin θ – 4 sin3θ
Put θ = 18°, we get,
sin 54 ° = 3 sin 18° - 4 sin318°
= `3((sqrt(5) - 1)/4) - 4((sqrt(5) - 1)/4)^3`
= `(3(sqrt(5) - 1))/4 - 1/16 (5sqrt(5) - 15 + 3sqrt(5) - 1)`
= `(12sqrt(5) - 12 - 8sqrt(15) + 16)/16`
= `(4sqrt(5) + 4)/16`
= `(sqrt(5) + 1)/4` ...(3)
From (1), (2) and (3), we get,
L.H.S. = `((sqrt(5) - 1)/4) - ((sqrt(5) + 1)/4)`
= `1/4(sqrt(5) - 1 - sqrt(5) - 1)`
= `-2/4`
= `-1/2`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Express the following as a sum or difference of two trigonometric function:
2 sin 4x cos 2x
Express the following as a sum or difference of two trigonometric function:
2 cos 4θ cos 2θ
Express the following as a sum or difference of two trigonometric function:
2 cos 35° cos 75°
Prove the following :
`(sin2x + sin2y)/(sin2x - sin2y) = (tan(x + y))/(tan(x - y))`
Prove the following :
sin 6x + sin 4x – sin 2x = 4 cos x sin 2x cos 3x
Prove the following :
`(sinx - sin3x + sin5x - sin7x)/(cosx - cos3x - cos5x + cos7x)` = cot2x
Prove the following :
sin 18° cos 39° + sin 6° cos 15° = sin 24° cos 33°
Prove the following :
cos 20° cos 40° cos 60° cos 80° = `1/16`
Prove the following :
sin 20° sin 40° sin 60° sin 80° = `3/16`
Prove the following:
`(cos9x - cos5x)/(sin17x - sin3x) = - (sin2x)/(cos10x)`
Prove the following:
3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6x + cos6x) = 13
1 +cos 20° +cos 30° +cos 50° = ______.