Advertisements
Advertisements
प्रश्न
Prove the following :
sin 20° sin 40° sin 60° sin 80° = `3/16`
उत्तर
L.H.S. = sin 20°· sin 40°· sin 60°· sin 80°
= `sqrt(3)/2*sin20^circ* sin40^circ * sin80^circ .....[because sin60^circ = sqrt(3)/2]`
= `sqrt(3)/4(2 sin40^circ* sin20^circ)*sin80^circ`
= `sqrt(3)/4[cos(40^circ - 20^circ) - cos(40^circ + 20^circ)] xx sin80^circ`
= `sqrt(3)/4[cos20^circ - cos60^circ]*sin80^circ`
= `sqrt(3)/8[2 sin80^circ* cos20^circ - 2 cos 60^circ* sin80^circ]`
= `sqrt(3)/8[sin(80^circ + 20^circ) + sin(80^circ - 20^circ) - 2 xx 1/2* sin80^circ]`
= `sqrt(3)/8[sin100^circ + sin60^circ - sin80^circ]`
= `sqrt(3)/8[sin(180^circ - 80^circ) + sqrt(3)/2 - sin80^circ]`
= `sqrt(3)/8(sin80^circ + sqrt(3)/2 - sin80^circ)`
= `sqrt(3)/8 xx sqrt(3)/2`
= `3/16`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Express the following as a sum or difference of two trigonometric function:
2 sin 4x cos 2x
Express the following as a sum or difference of two trigonometric function:
2 cos 4θ cos 2θ
Express the following as a sum or difference of two trigonometric function:
2 cos 35° cos 75°
Prove the following :
`(sin2x + sin2y)/(sin2x - sin2y) = (tan(x + y))/(tan(x - y))`
Prove the following :
sin 6x + sin 4x – sin 2x = 4 cos x sin 2x cos 3x
Prove the following :
`(sinx - sin3x + sin5x - sin7x)/(cosx - cos3x - cos5x + cos7x)` = cot2x
Prove the following :
sin 18° cos 39° + sin 6° cos 15° = sin 24° cos 33°
Prove the following :
cos 20° cos 40° cos 60° cos 80° = `1/16`
Prove the following:
cos 12°+ cos 84° + cos 156° + cos 132° = `-1/2`
Prove the following:
`(cos9x - cos5x)/(sin17x - sin3x) = - (sin2x)/(cos10x)`
Prove the following:
3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6x + cos6x) = 13
1 +cos 20° +cos 30° +cos 50° = ______.