Advertisements
Advertisements
प्रश्न
Prove the following identities
\[\left( \sec x \sec y + \tan x \tan y \right)^2 - \left( \sec x \tan y + \tan x \sec y \right)^2 = 1\]
उत्तर
\[\text{ LHS }= \left( \sec x \sec y + \tan x \tan y \right)^2 - \left( \sec x \tan y + \tan x \sec y \right)^2 \]
\[ = \left[ \left( \sec x \sec y \right)^2 + \left( \tan x \tan y \right)^2 - 2\left( \sec x \sec y \right)\left( \tan x \tan y \right) \right] \]
\[ - \left[ \left( \sec x \tan y \right)^2 + \left( \tan x \sec y \right)^2 - 2\left( \sec x \tan y \right)\left( \tan x \sec y \right) \right] \]
\[ = \left[ \sec^2 x \sec^2 y + \tan^2 x \tan^2 y - 2\sec x \sec y \tan x \tan y \right] \]
\[ - \left[ \sec^2 x \tan^2 y + \tan^2 x \sec^2 y - 2 \sec x \sec y \tan x \tan y \right]\]
\[ = \sec^2 x \sec^2 y + \tan^2 x \tan^2 y - 2 \sec x \sec y \tan x \tan y \]
\[ - \sec^2 x \tan^2 y - \tan^2 x \sec^2 y + 2 \sec x \sec y \tan x \tan y\]
\[ = \sec^2 x \sec^2 y - \sec^2 x \tan^2 y + \tan^2 x \tan^2 y - \tan^2 x \sec^2 y\]
\[ = \sec^2 x \left( \sec^2 y - \tan^2 y \right) + \tan^2 x\left( \tan^2 y - \sec^2 y \right)\]
\[ = \sec^2 x \left( \sec^2 y - \tan^2 y \right) - \tan^2 x\left( \sec^2 y - \tan^2 y \right)\]
\[ = \sec^2 x \times 1 - \tan^2 x \times 1\]
\[ = \sec^2 x - \tan^2 x\]
\[ = 1\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identites
sec4x - sec2x = tan4x + tan2x
Prove the following identities
\[\sin^6 x + \cos^6 x = 1 - 3 \sin^2 x \cos^2 x\]
Prove the following identities
\[\left( cosec x - \sin x \right) \left( \sec x - \cos x \right) \left( \tan x + \cot x \right) = 1\]
Prove the following identities
\[cosec x \left( \sec x - 1 \right) - \cot x \left( 1 - \cos x \right) = \tan x - \sin x\]
Prove the following identities
\[\frac{1 - \sin x \cos x}{\cos x \left( \sec x - cosec x \right)} \cdot \frac{\sin^2 x - \cos^2 x}{\sin^3 x + \cos^3 x} = \sin x\]
Prove the following identitie
Prove the following identities
\[\frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} + \frac{\sin^3 x - \cos^3 x}{\sin x - \cos x} = 2\]
Prove the following identities
\[\frac{\cos x}{1 - \sin x} = \frac{1 + \cos x + \sin x}{1 + \cos x - \sin x}\]
Prove the following identities
Prove the following identities
\[1 - \frac{\sin^2 x}{1 + \cot x} - \frac{\cos^2 x}{1 + \tan x} = \sin x \cos x\]
Prove the following identities
Prove the following identities
\[\left( 1 + \tan \alpha \tan \beta \right)^2 + \left( \tan \alpha - \tan \beta \right)^2 = \sec^2 \alpha \sec^2 \beta\]
Prove the following identities
Prove the following identities
Prove the following identities