English

Prove the following identities(sec⁡xsec⁡y+tan⁡xtan⁡y)2−(sec⁡xtan⁡y+tan⁡xsec⁡y)2=1 - Mathematics

Advertisements
Advertisements

Question

Prove the following identities
(secxsecy+tanxtany)2(secxtany+tanxsecy)2=1

Sum

Solution

 LHS =(secxsecy+tanxtany)2(secxtany+tanxsecy)2
=[(secxsecy)2+(tanxtany)22(secxsecy)(tanxtany)]
[(secxtany)2+(tanxsecy)22(secxtany)(tanxsecy)]
=[sec2xsec2y+tan2xtan2y2secxsecytanxtany]
[sec2xtan2y+tan2xsec2y2secxsecytanxtany]
=sec2xsec2y+tan2xtan2y2secxsecytanxtany
sec2xtan2ytan2xsec2y+2secxsecytanxtany
=sec2xsec2ysec2xtan2y+tan2xtan2ytan2xsec2y
=sec2x(sec2ytan2y)+tan2x(tan2ysec2y)
=sec2x(sec2ytan2y)tan2x(sec2ytan2y)
=sec2x×1tan2x×1
=sec2xtan2x
=1
 = RHS
Hence proved.

shaalaa.com
Trigonometric Functions - Truth of the Identity
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.1 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.1 | Q 8 | Page 18
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.