Advertisements
Advertisements
Question
Prove the following identities
Solution
\[\left( \frac{1}{\sec^2 x - \cos^2 x} + \frac{1}{{cosec}^2 x - \sin^2 x} \right) \sin^2 x \cos^2 x = \frac{1 - \sin^2 x \cos^2 x}{2 + \sin^2 x \cos^2 x}\]
\[\begin{array}{rcl}\text{ LHS } = & \left( \frac{1}{\sec^2 x - \cos^2 x} + \frac{1}{{cosec}^2 x - \sin^2 x} \right) \sin^2 x \cos^2 x \\ \\ = & \left( \frac{1}{\frac{1}{\cos^2 x} - \cos^2 x} + \frac{1}{\frac{1}{\sin^2 x} - \sin^2 x} \right) \sin^2 x \cos^2 x \\ \\ = & \left( \frac{\cos^2 x}{1 - \cos^4 x} + \frac{\sin^2 x}{1 - \sin^4 x} \right) \sin^2 x \cos^2 x \\ \\ = & \left( \frac{\cos^2 x\left( 1 - \sin^4 x \right) + \sin^2 x\left( 1 - \cos^4 x \right)}{\left( 1 - \cos^4 x \right)\left( 1 - \sin^4 x \right)} \right) \sin^2 x \cos^2 x \\ \\ = & \left( \frac{1 - \cos^2 x \sin^4 x - \cos^4 x \sin^2 x}{\left( 1 + \sin^2 x \right)\left( 1 - s {in}^2 x \right)\left( 1 + \cos^2 x \right)\left( 1 - \cos^2 x \right)} \right) \sin^2 x \cos^2 x \\ \\ = & \left( \frac{1 - \cos^2 x \sin^4 x - \cos^4 x \sin^2 x}{\left( 1 + \sin^2 x \right) . \cos^2 x . \left( 1 + \cos^2 x \right) . \sin^2 x} \right) \sin^2 x \cos^2 x \\ \\ = & \left( \frac{1 - \cos^2 x \sin^4 x - \cos^4 x \sin^2 x}{\left( 1 + \sin^2 x \right)\left( 1 + \cos^2 x \right)} \right) \\ \\ = & \frac{1 - \cos^2 x \sin^2 x\left( \sin^2 x + \cos^2 x \right)}{2 + \sin^2 x . \cos^2 x} \\ \\ = & \frac{1 - \cos^2 x \sin^2 x}{2 + \sin^2 x . \cos^2 x}\end{array}\]
APPEARS IN
RELATED QUESTIONS
Prove the following identites
sec4x - sec2x = tan4x + tan2x
Prove the following identities
\[\sin^6 x + \cos^6 x = 1 - 3 \sin^2 x \cos^2 x\]
Prove the following identities
\[\left( cosec x - \sin x \right) \left( \sec x - \cos x \right) \left( \tan x + \cot x \right) = 1\]
Prove the following identities
\[cosec x \left( \sec x - 1 \right) - \cot x \left( 1 - \cos x \right) = \tan x - \sin x\]
Prove the following identities
\[\frac{1 - \sin x \cos x}{\cos x \left( \sec x - cosec x \right)} \cdot \frac{\sin^2 x - \cos^2 x}{\sin^3 x + \cos^3 x} = \sin x\]
Prove the following identitie
Prove the following identities
\[\frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} + \frac{\sin^3 x - \cos^3 x}{\sin x - \cos x} = 2\]
Prove the following identities
\[\left( \sec x \sec y + \tan x \tan y \right)^2 - \left( \sec x \tan y + \tan x \sec y \right)^2 = 1\]
Prove the following identities
\[\frac{\cos x}{1 - \sin x} = \frac{1 + \cos x + \sin x}{1 + \cos x - \sin x}\]
Prove the following identities
Prove the following identities
\[1 - \frac{\sin^2 x}{1 + \cot x} - \frac{\cos^2 x}{1 + \tan x} = \sin x \cos x\]
Prove the following identities
\[\left( 1 + \tan \alpha \tan \beta \right)^2 + \left( \tan \alpha - \tan \beta \right)^2 = \sec^2 \alpha \sec^2 \beta\]
Prove the following identities
Prove the following identities
Prove the following identities